
i

Software Issue Tracking and Management System

For

Software Operational and Maintenance Phase

Case Study: Centenary Bank

A postgraduate dissertation report presented to the Faculty of Science in partial

fulfilment of the requirements for the award of the degree Master of Science

in Information Systems.

Uganda Martyrs University

MUGUME EDGAR

2014-MI32-20007

December 2016

i

DECLARATION

I have read the rules of Uganda Martyrs University on plagiarism and hereby state that this work

is my own. Replace this page with the signed page.

ii

 DEDICATION

This work is dedicated to the Almighty God who has brought me thus far and Twine family for

the continuous encouragement and support they have given me in regards to pursuing this

Masters’ Degree.

iii

ACKNOWLEDGEMENTS

The success of this project was made possible because of the various contributions from the

people surrounding me. It is in this regard therefore, that I express my gratitude to the various

individuals and organizations, all in their respective capacities for their tireless efforts and

role played towards the successful completion of my research project.

Thanks to the Project Manager – Exodus Project and Chief Manager for core banking,

infrastructure at Centenary Bank, Mr. Ekemu Francis in particular, for having been able to

provide a cordial research environment and ample interview time with his staff.

Special thanks owed to my supervisor, Mr. Mugejjera Emmanuel for the pivotal role played

and pertinent guidance provided during the research period.

Finally, I am grateful to all my friends and workmates at Neptune Software whom I happened

to interact with, and those who helped me in my research Olupot Douglas, Winnie Nabajju,

Twesigye Wence, Bridget Nankanja, Andrew Babigaisa, the MIS class of 2014 and all those

that were able to provide guidance and support, both spiritual, technical or otherwise, that I

have not been able to mention, for all your efforts were integral components towards the

successful completion of my research.

 “May God Bless You All”

iv

TABLE OF CONTENTS

DECLARATION .. i

DEDICATION .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. viii

ABSTRACT ... ix

CHAPTER ONE ... 1

INTRODUCTION ... 1

1.0 Background ... 1

1.2 Problem statement ... 5

1.3 Main Objective .. 5

1.4 Scope ... 6

1.5 Significance ... 6

CHAPTER TWO .. 8

LITERATURE REVIEW ... 8

2.0 Introduction ... 8

2.1 What is issue tracking? ... 8

2.2 Generic Process of the Issue / Bug reporting in Issue tracking ... 10

2.3 Issue tracking systems classification criteria. ... 13

2.4 Comparative Analysis of existing issue tracking systems .. 15

2.5 Qualities and capabilities of a Modern Bug/Issue Tracking System .. 22

2.6 Issue reporting best practices .. 26

2.7 Software Development Life Cycle (SDLC) Model .. 29

CHAPTER THREE .. 33

METHODOLOGY .. 33

3.1 Introduction ... 33

3.2 Research Design .. 33

v

3.3 Evolutionary Prototyping software development life cycle model ... 37

System Implementation / Coding .. 41

System Integration / Testing ... 41

CHAPTER FOUR ... 43

SYSTEM ANALYSIS AND DESIGN .. 43

4.0 Introduction ... 43

4.1 Requirements Gathering ... 43

4.2 Functional Requirements .. 48

4.3 Hardware and Software Requirements.. 48

4.4 Non Functional Requirements .. 49

4.5 Functional Design ... 52

4.6 User Interface Design.. 61

4.7 Network and System Design ... 63

4.8 System Security .. 64

4.9 Conclusion .. 65

CHAPTER FIVE ... 66

SYSTEM IMPLEMENTATION .. 66

5.0 Introduction ... 66

5.1 Acquisition of development tools ... 66

5.2 Installation of the development tools .. 66

5.3 The Coding phase ... 70

5.4 Installation of the system. ... 77

5.5 System testing. .. 78

CHAPTER SIX .. 81

SUMMARY, CONCLUSION AND RECOMMENDATIONS ... 81

6.0 Introduction ... 81

6.1 Summary ... 81

6.2 Conclusion .. 81

6.3 Future Work .. 82

REFERENCE LIST .. 84

APPENDIX 1 ... 86

APPENDIX 2 ... 89

vi

LIST OF TABLES

Table 2.1: A summary table showing Classification categories for Bug Tracking Systems 14

Table 2.2: Comparative Analysis of Features Based on Platform Characteristics 17

Table 2.3: Comparative Analysis Based on Support Characteristics ... 18

Table 2.4: Classification Based on Reporting Characteristics .. 20

Table 2.5: Classification Based on Tracking Characteristics ... 21

Table 4.1: Results from the interview ... 47

Table 4.2: Summary of the results in terms of functional requirements 47

Table 5.1: Script Descriptions ... 77

Table 5.2: General Evaluation on System functionality ... 80

Table 5.3: Summary Grading of Core Functionality .. 80

vii

LIST OF FIGURES

Figure 2.1: Simplified issue lifecycle ... 11

Figure 2.2: Generic bug life cycle flow .. 12

Figure 2.3: Common phases of an SDLC model (Source: Hoffer, 2011)..................................... 30

Figure 2.4: Evolutionary Prototyping Methodology (Breu et al, 2010) 31

Figure 5.1 Installation of Tomcat .. 68

Figure 5.6: Home Screen. ... 72

Figure 5.7: Project creation ... 73

Figure 5.8: Ticket creation .. 73

Figure 5.9: tomcat installation page .. 78

viii

LIST OF ABBREVIATIONS

API Application Interface

GUI Graphical User Interface

ICT Information and Communications Technology

IT Information Technology

MIS Management Information Systems

SDLC Software Development Life Cycle

UI User Interface

ix

ABSTRACT

Software issue tracking is basically the process by which an issue encountered by an end-user is

reported to the software vendor/developer for fixing. A software Issue tracking system is an

application that is designed to help in issue tracking, software quality assurance, and also for

programmers to keep track of reported software issues in their work.

The core aim and significance of this research was to design and implement a fast, simple and

effective issue tracking system with intelligent features such as automated ticket assignment,

duplicate filtering, bug prediction and change control management, among others, hence

delivering a high performance, lightweight and flexible issue tracking system called Octopus. The

need for this arose when it was established and proved that existing issue tracking systems allow

reporting of duplicate issues, lacked adequate features to allow automated assignment of issues

hence making the issue management process manual and time consuming. These systems were

also incapable of bug prediction and change control wasn’t enriched. The researcher then

concluded that having the above gaps addressed would significantly improve the timelines in

which software issues are solved efficiently and effectively.

Using qualitative research methods to enable gathering of unknown software user needs and

uncover all the variables surrounding issue tracking process workflows, the researcher deployed

semi-structured interviews, and literature reviews. Also research strategies as Case Study Strategy

and Design Science were used facts from this requirements gathering process where used to design

of a fast, simple and effective issue tracking software with intelligent called Octopus. This system

was thoroughly tested and evaluated by a team of experienced users that comprised of both

software end users and software developers to prove that the gaps identified had been resolved.

In conclusion, issue tracking is an important part of every software project and using issue tracking

systems is necessary, as it brings on board benefits such as improvement in the turnaround time of

software issue resolution, increased user satisfaction and customer appreciation in software, better

productivity of teams and reduction of operating expenses in software firms.

1

CHAPTER ONE

INTRODUCTION

1.0 Background

This research was conducted in the domain of Management Information Systems (MIS)

specifically Project Management Information Systems.

Recent years have seen a massive growth and expansion of software in both open source and

commercial sectors (Saldarini, 2010). Systems or their components are upgraded, fixed, or

replaced, presumably to provide better functionality, ease usage, and reduction of operating

expenses among others. This research mainly focuses on the life cycle of application software,

particularly the operational and maintenance phase of software. Operations and Maintenance is the

fourth phase of the Software Development Lifecycle. In this phase, systems are in place and

operating. An operational system is periodically assessed to determine how the system can be

made more effective, secure, and efficient. Often the need arises for enhancements or

modifications to the system. These enhancements are then developed, tested, and added. After

application of such enhancements or modifications, the system is monitored for continued

performance in accordance with the enhancements made (Saldarini, 2010).

However, during this operational use of a given software, users encounter issues every now and

then as they interact with the various functionality in the given system. These are primarily referred

to as Software issues because at the point when the user reports this occurrence to the software

developer/vendor, it is not yet clear or proven whether this particular occurrence in question is a

System Bug / defect, or a missing functionality, or if it is just a mere user knowledge gap problem

in line with the system usage. It is later after further analysis of the logged software issue that

clarity is made on which category this issue falls and then a remedy is given appropriately. A

missing functionality means that among the items scoped as deliverables for a given software by

its vendor, this function in question is not supported by the software. Knowledge gap as often

referred to as in the software arena is when a given functionality in a software is available and

works perfectly well but for one reason or another, the user fails to navigate and use the function

to obtain the desired results. A Bug/defect which has been noted to be the most delicate category

2

in Software issues is defined as a variance from specification causing unexpected behaviors in a

given software. These bugs could have existed from the time of initial implementation of the

software or may have been introduced during enhancements or modifications the software.

However, regardless of the category, it is important that any Software issue as reported by a user

is tracked and resolved diligently in a very systematic manner to ensure quick accurate delivery.

This can best be achieved through the use of software Issue tracking system (Trajkov, 2011).

Software issue tracking is basically the process by which an issue encountered by an end-user is

reported to the software vendor/developer for fixing. It can also be defined as process of tracking

the life cycle of a software issue from the time it is encountered by the end-user and reported to

the vendor/developer, till the time a fix is done and implemented to address the end users concerns.

A software Issue tracking system is an application that is designed to help in issue tracking,

software quality assurance, and also for programmers to keep track of reported software issues in

their work.

Issue tracking systems in the software arena allow individual or groups of developers to keep track

of outstanding bugs in their product effectively. Basically, a software Issue tracking system is a

tool that facilitates management of issues in general and bugs in particular in a quicker manner

and ensures higher quality management of software being developed or being used. Globally, these

systems are widely used and they are treated as essential repositories that help in finding status of

issues/bugs and quickly resolving them. Software engineers frequently use software issue/bug

reports from these issue tracking systems to fix bugs as long as the reports contain enough

information to point out the bug. This issue tracker software helps software teams manage issue

reporting, assignment, tracking, resolution, and archiving via a reliable, shared to-do list that is

used by numerous stakeholders throughout the lifecycle of the software and also serves as an

archive of completed work (Dingsoyr and Royrvik, 2003).

A major component of an issue tracking system is a database that records facts about known bugs.

These facts may include the time a bug was reported, its severity, the erroneous program behavior,

and details on how to reproduce the bug; as well as the identity of the person who reported it and

programmers who may be working on fixing it.

3

Typical issue tracking systems support the concept of the life cycle for a bug which is tracked

through the status assigned to the bug. An Issue tracking system should allow administrators to

configure permissions based on status, move the bug from one status to another, or delete the bug.

Some systems will e-mail interested parties, such as the submitter and assigned programmers,

when new records are added or the status changes.

However, most issue tracking systems are still lacking. Many of them are merely interfaces to a

database that stores all reported bugs. As a result, they often ask too much from end-users who are

not familiar with development practices. At the same time they cause frustration for developers

who in turn get disappointed about the quality of bug reports submitted by users

In a survey conducted to software engineers of companies like Mozilla, Eclipse, and Apache found

that the information items presented in bug reports play a very important role in fixing of bugs. It

is further stated that, insufficient or improper reports caused delay in fixing bugs and thus causing

crossing deadlines (Bettenburg et al, 2010). The information items that can be found in the bug

reports include screenshots, test cases, expected behavior, observed behavior, stack traces and

steps to reproduce the bug among others. Such information items is generally the minimum

preferred requirement needed by engineers to fix bugs easily. However, the prior research in this

area by (Bettenburg et al, 2010) and (Zimmermann et al, 2011) revealed that the bug reporters

omitted these Essential information fields in their bug reports making them poorly designed

reports. Such reports are of little use to developers for the purpose of fixing bugs. When developers

need very descriptive information and the bug reports lack such information, it leads to stalling of

the project or delay in completion with other cause and effects. Also, the previous works have not

examined the ticket resolution process pace. A ticket simply refers to the receipt number given to

a user after they have successfully logged an issue. Its main purpose is to provide a precise ID

number to the user to ease the tracking of the issue on the issue tracking system. It is important to

track the pace at which issues are being resolved, as large software development teams require a

lot of labor and therefore a need to account for the efficiency of each team member.

4

Globally, some of the problems with the current issue tracking systems is that they have ignored

crucial aspects such as; identifying cases when a duplicate of a previously encountered and

resolved issue is being reported so as to stop it by probably enlightening the user that this issue

was logged before, and going ahead to provide the already existing fix. This has proven to be time

consuming and also wastes resources that could be applied elsewhere (Bettenburg, 2011).

Currently when issues are logged by users, they wait on manual intervention by whoever assigns

the issue to various developers at software vendor end. Ideally there should be features and

mechanism that enable issues to automatically be assigned to developer for attention as soon as

they are logged to avoid time wasting in the issue resolution process (Baysal et al, 2011). Change

control also isn’t enriched in the existing issue tracking systems and hence the ability to maintain

precise and updated system documentation is insufficient (Zatul et al, 2012). Furthermore, issue/

bug prediction basing on the recently resolved issues is another good technique that would

efficiently help in the quality assurance process as it will point the testers of the solution to check

potential logical errors that may arise as a result of fixing a given bug or enhancing a given module

(Lyu, 2011). Most existing issue tracking systems have however not taken into considering the

mechanism of adequate bug prediction.

In Uganda, software issue tracking systems have only been fully embraced on big software project

implementations in large companies for instance at Centenary Bank under the Core Banking

system support and maintenance. However their usage is still very low in medium sized and small

companies. One of the reasons for their low usage is lack of exposure to the benefits of having

issue tracking systems in place. But common reason is simply because their software vendors still

use rudimental / traditional methods of Application Support that does not provide a trail when

addressing software defects, which is very dangerous when it comes to proper support, growth and

improvement of a given software. For those few like centenary bank that have been exposed to

issue tracking systems, they have faced a number of challenges similar to those faced globally as

has been stated above. These challenges have heard a negative impact in support and growth of

software, but most importantly led to loss of revenue through delayed / inefficient resolution of

crucial software issues.

5

The core significance of this research is to provide considerations for the design of a fast, simple

and effective issue tracking software with intelligent features such as automated ticket assignment

and filtering duplicates among others, hence delivering a high performance lightweight and

flexible issue tracking software called Octopus. While some of the considerations presented in

later chapters may already be addressed by existing commercial tools, it is the interplay and

tradeoffs that must be made among them that I argue for the need to be carefully scrutinized and

enhanced to provide a comprehensive software issue tracking system.

1.2 Problem statement

Existing issue tracking systems allow reporting of duplicate issues, a previously encountered and

resolved issue can be reported one or more times probably by different users without their

knowledge, this is time consuming (Bettenburg, 2011). An Ideal issue tracking system should

have automatic assignment facility by showing the list of probable fixers of this type of bug that

will save the moderator’s time in searching the developer. This future is however lacking (Baysal

et al, 2011) hence making the issue assignment process manual and time consuming. Change

control isn’t enriched (Zatul et al, 2012) in the existing issue tracking systems and hence the ability

to maintain precise and updated system documentation is insufficient. Furthermore, issue/ bug

prediction basing on the recently resolved issues has not been taken into consideration. (Lyu, 2011)

1.3 Main Objective

The broad objective was to design and implement a software issue tracking system that will enable

quick and efficient resolution of software issues by enhancing critical issue tracking features such

as issue auto-assignment, duplicate issue filtering and change control among other.

1.3.1 Specific Objectives

The specific objectives of this project are:

I. To perform the comparative study and analysis of current issue tracking system,

including review of literature so as to identify and understand the gaps

6

II. To identify the limitations in these issue tracking system in study basing on the

Gaps.

III. To propose and develop a model of a software issue tracking system that addresses

the limitations identified from the research.

IV. To implement a prototype of the model called Octopus.

V. To test the prototype.

1.4 Scope

The geographical scope of this was at Centenary Bank head office in Uganda, targeting the IT

support officers under the department of Business technology as the users (Reporters) and their

core banking system vendors as the developers. The system scope was to be improved the issue

tracking process by addressing the gaps encountered by user and developers during resolution of

issues of their Core Banking System software in its Operations and Maintenance phase.

1.5 Significance

This system plays a significant role in Software project environments for both the users (Reporters)

and the developers in the following ways:

a) Prevention from duplicate reporting of already resolved bugs that addresses the

aspect of saving time in issue resolution, which is key in an operational business environment.

b) Ability to automatically assign issues also saves time which is usually wasted when

issues are just logged without a particular person tagged to resolve them.

c) Since change control is a very delicate matter when dealing with deployment of

new patches and new requirements, this system will ensure it provides avenue to capture and store

necessary information for future reference to the solutions given.

7

d) Graphical analysis and presentation in areas mentioned provides some sort of dash

board where management is able to assess efficiency of their staff, the software, or even the

software Providers. This is key in business management.

8

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This research presents background information on issue tracking and issue tracking systems in the

area of software development and operational maintenance. It constituted an in depth discussion

on already accomplished related works in regards to issue tracking, issue tracking systems and

software development team coordination. Through the exploration of this existing literature, this

chapter will introduce the niche addressed by this research.

2.1 What is issue tracking?

There are a number of issue tracking software in existence today. While all of these systems vary

considerably in their interfaces and features, they all share the same core purposes and

functionality as described below. If we consider the textbooks definition of issue tracking, we find

descriptions such as the following:

Issue tracking, often called bug tracking (and sometimes request tracking), is the process of

keeping track of open issues in software development. Bug tracking is a misleading term in many

ways and obviously depends on your definition of a bug. “Issue” is a broad enough term to describe

most of the kinds of tasks you might need to track when developing and maintaining software, and

so drives our choice of terminology here (Henderson, 2006).

Functionally, most issue tracking systems provide a form that allows us to report and manage bugs.

They also provide a set of stored reports and graphs that allow us to analyse, manipulate and output

bug data in various ways, and a customized workflow or life cycle that provides for orderly bug

management. (Black, 2002)

9

Issue trackers, bug trackers, modification request control systems regardless of what specific

terminology is used all roughly refer to the same class of software systems. In the most general of

terms, these systems are designed to manage electronic artefacts that move from a starting state to

an end state (and possibly visit several in-between states along the way), and accumulate

information during their transitions between these states. More specifically, issue tracking systems

are databases that keep track of bodies of information, outstanding issues such as software defects

or “bugs,” feature requests, customer inquiries, etc. The variety in the types of information stored

in issue tracking systems has been acknowledged since their earliest incarnations.

A Modification Request (MR) still applies over 30 years after it was started. A Modification

Request (MR) is a request to those in charge of a system to modify that system (Jaantti et al,2012).

The request might be to add, modify, or delete capabilities, to fix a bug, to issue a new version of

a system, or even to create a system. Thus our definition of an MR includes trouble reports, design

change requests, enhancement requests, etc. A request may result in changes to system hardware,

software, or documentation or it may result in no changes at all (Jaantti et al.2012).

This information represents tasks that move from an opening state to a closed state over time.

Along the way, these information artefacts often accumulate additional information as various

people within the software team work on them. For example, a bug might contain instructions on

how to reproduce the problem, or a feature request might be refined with additional specifications

or sketches. Each of these items (or “modification requests” or “issues”) can also have certain

attributes associated with them. A bug, for example, might include things like the time the issue

was filed, who filed it, what version of the software the bug applied to, and the severity of the bug

(e.g., a critical bug that causes loss of data versus a minor one such as an aesthetic imperfection).

The primary interest lies in issue tracking systems in the software development and maintenance

domain. Given the relatively free and unconstrained usage of the term issue tracking, there are also

similar systems that this research will not be examining in this thesis—in particular, helpdesk

10

trouble ticket trackers, and business issue management systems. While these systems do represent

a common manifestation of issue tracking, their primary purpose is not targeted toward software

development and are thus outside the focus of this research.

2.2 Generic Process of the Issue / Bug reporting in Issue tracking

The issue reporting/tracking system provides an interactive web based platform for bug reporting

and progress tracking. The system may involve a generic process or specific schedule of bug

reporting process also known as a change request. Common items of interest captured during bug

reporting include;

a) Reporter’s name or Id.

b) Type of change request: Whether it’s a bug, enhancement or a new requirement.

c) Description: Detailed description of the bug including what, where, why, how and

when the bug occurs. Actual message that appears during the operation may be

included with the actual set of input and expected output.

d) Version or Build number: Specify the version of the project.

e) Component: Specific component need to be specified.

f) Screenshot/Attachment: Corresponding screenshot can also be uploaded as a .jpg or

.gif file by capturing the actual operation/output/message.

g) Priority: Priority may be assigned for its urgency.

h) Severity: Specify frequent occurrence and its impact in the system.

i) Status: Current status of the bug (new, opened, confirmed, closed, etc.).

j) Created by: Name of the person or id already registered with the system who is

reporting the bug.

k) Assigned to: The bug reporter may also assign bug to specific person, if one knows

about a particular person who can solve this problem otherwise assigned by the

moderator.

l) Revision History: If the bug is earlier reported, show the historical changes.

m) Estimated time: The estimated time may be specified, generally used in case of closed

team environment not in the open source environment.

n) Comments: Any other information that is helpful in identifying the bug.

11

Within an issue tracking system, each item (or issue or case) generally follows one of a few

predefined paths from when it is first opened until it is eventually closed. Depending on the type

of issue, there may be various intermediate states as well as cycles within its path. Each stage in

the life of an issue is characterized by a status, or state. The number of states may vary from system

to system. In addition, within a single issue tracking system, different issues will go through a

different succession of states (Jaantti et al, 2012).

This set of paths is often referred to as the workflow supported by an issue tracking system

(Bugzilla, 2009). Workflows can vary from very simple and open-ended to very detailed and

complex. The state diagram in Figure 2.1 illustrates a minimal set of states required for an issue

tracking system’s workflow, namely, the open and closed states and the transitions between them.

When a new bug or feature request is created it starts in the open state. After work has been

completed on this item it follows the resolve transition to end up in the closed state. If the issue is

later found to be incomplete (e.g., a bug reappears or a feature is not fully implemented) it can

follow the reopen transition back to the open state.

 Resolve

 Open Reopened

Figure 2.1: Simplified issue lifecycle

The above process looks simple but there are a number of situations in which such a simplified

view of issue tracking falls apart. For instance, many software development teams require issues

to be verified before officially being marked as closed: When a bug is resolved, it gets assigned

back to the person who opened it. This is a crucial point. It does not go away just because a

programmer thinks it should. The golden rule is that only the person who opened the bug can close

the bug. The programmer can resolve the bug, meaning, “hey, I think this is done,” but to actually

close the bug and get it off the books, the original person who opened it needs to confirm that it

was actually fixed or agree that it shouldn't be fixed for some reason. (Fog Creek Software 2009b).

Open

Closed

12

The system produced from this research (Octopus) shares a similar architecture to The Bug Track

as shown in figure 2.2 below which aims to be as simple enough for small teams of development

yet still effective for the job.

Figure 2.2: Generic bug life cycle flow

Most bug tracking systems currently availed also tend to lean towards a generic bug life cycle flow

(figure 2.2) can be described as follows.

a) When the bug is first reported, its status is usually set to “Unconfirmed” as in the case of

Bugzilla. Bugzilla is one of the popular issue tracking system and it was brought to

existence during the Mozilla Firefox project to help track issue surrounding the

development and implementation of the Mozilla Firefox product. After its first review, the

status can be updated to “New” or “Assigned based on the previous bug history databases.

b) Once the assignee has corrected the bug, he or she can update its status as “Resolved” by

specifying how it was resolved i.e. “Fixed”, “invalid (not a bug)”, “duplicate”, “won't fix”,

and “works for me”. A resolved bug, will not be “closed” until someone else involved

confirms it out or it will be confirmed by the moderator.

13

c) Once it is confirmed, the bug status becomes “verified” otherwise the status is set to

“Reopen”. It remains in “Verified” state until it is incorporated in the release version of the

product and its status will be updated to “Closed”.

d) The closed bug can be reopened with its status as “New” or “Unconfirmed”. There might

be many bugs that are currently being fixed and some of bugs that are waiting for resolution

set to be “closed”.

e) A status report can be generated from time to time with number of bugs pending in each

category as a status and emailed to the assignee as well as submitter of the bug. So the

moderator or assignee can see the workload on individual and may postpone the bugs for

some time or reassign it to others for its resolution. In this way, the bug can be effectively

resolved in an efficient way. These status reports are also crucial in this process as they

greatly assist in tracking progress. Most bug tracking systems currently have these in place

and each system avails them with varying extent of details. These reports can also be

summarised into an information dashboard for consumption of higher Management who

may lack time to analyse report by report in order to establish the level of efficiency. As

we shall see later on in this literature review, most issue tracking systems have neglected

the need to have a comprehensive dash board to serve this purpose.

2.3 Issue tracking systems classification criteria

The issue/bug tracking system vary from general purpose to the specific purpose. The generic

system will have many features while the specific purpose systems may have limited features. A

suitable issue tracking system can be selected based on user’s requirement.The user’s requirement

generally varies from the platform, support, size, reporting, tracking and other features of the

project. These broad criteria can be further classified or categorized in three or more sub-categories

as given in table 1.

Platform: refers to license policy, architecture, operating system, web server, back-end database,

programming language and clients.

Support: refers to language, multiple projects, web interface, database, email notification and

localization.

14

Size and usage: refer to the size of the project, number of downloads, number of releases and

number of clients/usage.

Reporting: refers to how issues are reported that includes; forms incorporated, email, attachments,

web and feedback to the users/reporters.

Tracking: refers to assignment of issues, timely update status of the bug, graphs for the number

of pending bugs, assigned bugs, and bugs fixed over a period of time in each category, bug

prediction, duplicate bug filtering and search facility for new as well as existing bugs to know

about their status.

The other feature refers to any other feature that is not a part of the above mentioned categories.

A summary table showing Classification categories for Bug Tracking Systems (Table.1)

Platform Support Size and

Usage

Reporting Tracking Other

Features

License Language

Support

Size of the

project

Form based Timely updates Any other

features

that may

not come

up an

specific

category

Architecture Multiple

projects

Number of

downloads

Email based Graphical

display/reporting

Operating

system

Web

interfaces

Number of

releases

Attachments Search facility

Web-sever Databases Number of

clients/ usage

Web (Online) Issue Assignment

Back-end

database

Email

Notifications

 Feedback Bug Prediction

Programming

language

Localization Duplicate bug

filtering

Client change control

Table 2.1: A summary table showing Classification categories for Bug Tracking Systems

15

2.4 Comparative Analysis of existing issue tracking systems

Plenty of issue tracking systems are available in the industry. We chose the most popular, most

used and also still under improvement process. The features and functionalities in these tools were

deeply analysed basically to establish and acknowledge the already done works and also point out

those works that need improvement. The tools considered in this analytical review are;

a) Bugzilla,

b) Jira,

c) Trac,

d) Mantis,

e) Gnats,

f) BugTracker.Net,

g) Fossil.

The comparison analysis on the following issue tracking systems above was carried out basing on

the issue tracking systems classification criteria mentioned earlier above in 2.3.

 2.4.1. Classification Based on Platform Characteristics

The comparison criteria based on platform characteristics are shown in table 2 below. In this table,

most of these tools are available in open source environment. Mantis is closed source while its free

version is available for download and use. Some of the tools are available as a licensed version for

which support can be asked from the ownerPaid version of Jira comes in three different variants:

such as Standard, Professional and Enterprise based on the size of the project and support. Most

of these tools work in web based environment while their early versions were available as

client/server based environment.

Trac is developed on wiki based architecture, i.e. anyone can see bugs, fix bugs and edit any part

of it. Operating environment for most of the projects are cross-platform, i.e. they can be installed

on any machine.

16

BugZilla and GNats are available on Linux while BugTracker.Net is available on windows

environment. The clients are browser based, so they are independent of the platform. For web

server, most of the tools required apache/tomcat except BugTracker.Net which requires MS-IIS.

Most of these tools support MySQL as a backend database except BugTracker.net which requires

MS-SQL Server and Fossil requires SQLite. These tools may vary on the basis of programming

language used in coding. Tools are developed in C, Python, and PHP, Perl, Java and C #.Net

programming languages.

 Comparative Analysis of Features Based on Platform Characteristics (Table 2)

 Tools

Platform

Bug Zilla Jira Trac Mantis Gnats BugTracke

r.Net

Fossil

license Open

Source/Free/

Proprietary

Free for

non-

commercial

use/

Proprietary

Open

Source/

Free

Free/ paid Free and

Open

Source

Open

Source

Open

Source/Fr

ee

System

Architecture

Client server

/ Web based

Client

server /

Web based

Web

based/

Wiki

Based

Web

based/

WAP

Web

based

Web based Distribut

ed Web

based

Server

Operating

System

Linus Cross-

platform

Cross-

platform

Windows

, Linus,

Mac-OS

Linux Windows Windows

, Linus,

Mac-OS

Web server Apache,

MS-IIS, or

server

capable to

run CGI

Apache

Tomcat

Apache Apache

and

MS-IIS

Apache MS-IIS Apache

and

MS-IIS

17

Table 2.2: Comparative Analysis of Features Based on Platform Characteristics

2.4.2 Classification Based on Support Characteristics

The important component for comparison of tools is support features which are shown in table 3.

The general characteristics for support features are Language, Web Interface, Maintenance

support, Email notification and Localization. Most of the tools support multiple languages based

on Unicode system. Only Fossil and GNats do not have the support of multiple language features.

Again in the same line, most of the tools support web based interface. People are more fascinated

to use browser based interface because it is independent of operating system environment.

Fossil does not have the complete web based interface. Maintenance support is also available for

free of cost or with a paid service with nominal charges. Whenever, a new bug or update is

reported, an email will be automatically sent to all users who are in the registered mailing list with

the project. The email will also be sent to all registered users even when there is a small update.

Bug localization, i.e. finding the most relevant part of source file hierarchy of software in the bug

repository database is another important feature provided by BugZilla, Trac and Mantis while

others does not have.

Backend

Database

MySQL,

Oracle and

PostgreSQL

Mostly

supports all

RDBMS

MySQL,

SQLlite,

Postgre-

SQL

MySQL,

MS SQL,

and

PostgreS

QL

MySQL MS-SQL

Server

SQLLite

Programming

languages

TCL/Perl Java Python PHP C ASP.Net C

Client (Web

Browser)

Anyone Anyone Anyone Anyone Anyone Anyone Anyone

18

Table 3: Comparative Analysis Based on Support Characteristics

 Tool

Support

BugZilla Jira Trac Mantis Gnats BugTracker.Net Fossil

Language

Support

Yes Yes Yes Yes No Yes No

Web

Interface

Yes Yes Yes Yes Yes Yes No

Maintenance

Support

Yes Yes Yes Yes No Yes Yes

Email

Notification

Yes Yes Yes Yes Yes Yes No

Bug

Localization

Yes No Yes Yes No No No

Table 2.3: Comparative Analysis Based on Support Characteristics

2.4.3 Classification Based on Size and Usage Characteristics

Another component of the feature to compare is the size/usage of the tools. In this category, size

of the project, support of multiple projects, number of downloads, number of releases and clients

per usage are the important parameters for which the statistics can be collected over different time

period that may be from the date of first release to the recent date of release. The statistics were

collected by browsing the corresponding project website wherever it is available as shown in the

table 4.

19

Table 4: Year of First and Latest Release

 Tool

Release

Status

BugZilla Jira Trac Mantis Gnats BugTracker.Net Fossil

First

Release

1998 2004 2006 2000 1992 2002 2006

Latest

Release

2011 2013 2010 2013 2005 2011 2012

Table 2.4: Year of First and Latest Release

Looking at the table, conclusion can be drawn about the current development status of these

trackers, i.e. whether it is active or dead. It will also inform about the life of trackers that will be

helpful, regarding its integrity and maturity. Here, it is clearly shown that there are many releases

for the trackers Jira, Fossil and BugZilla. The reason may be the frequent releases which occur and

early fixes are being incorporated and updated version is being made available to the users

2.4.4 Classification Based on Reporting Characteristics

Another important component is reporting of bug to the project. This can be done by either of these

methods, i.e. form based, email, attachments, web (online) and feedback. This is shown in table 5.

20

Table 5: Classification Based on Reporting Characteristics

 Tool

Reporting

BugZilla Jira Trac Mantis Gnats BugTracker.Net Fossil

Form Based Yes Yes Yes Yes Yes Yes Yes

Email Yes Yes No Yes Yes Yes No

Attachments Yes Yes No Yes No Yes No

Web(Online) Yes Yes Yes Yes Yes Yes Yes

Feedback Yes Yes Yes Yes Yes Yes Yes

Table 2.4: Classification Based on Reporting Characteristics

A well designed reporting feature attracts users in submitting the bug effectively.

2.4.5 Classification Based on Tracking Characteristics

The tracking feature contains subcategories like; issue assignment, timely update status of the bug,

graphs for the number of pending bugs, change control, assigned bugs, and bugs fixed over a period

of time in each category, bug prediction, duplicate bug filtering and search facility for new as well

as existing bugs. Most of the systems have one or more of these functionalities however some are

generally lacking in most as shown in table 6.

Whenever new updates are received, the registered members receives an email regarding the

updates as well as new release of the system. The graphical and charting facility is one of the very

important features that tell user about the number of pending bugs, number of open bugs, number

of closed bugs, time taken by each bugs in the form of interactive charts and estimated time to

resolve the bug. To track the bug, the tools have the facility to search for a bug that is already

submitted in the system. This is helpful in identification of duplicate bugs (Bettenburg, N, 2011)

21

Current day’s product must have all these facility with dynamic graphical and charting options.

The search facility is also one of the important considerations. Generally, the systems have full

text search facility on title, description and summary of the bug report.

Table 6: Classification Based on Tracking Characteristics

 Tool

Tracking

BugZilla Jira Trac Mantis Gnats BugTracker.Net Fossil

Timely

Updates

Yes Yes Yes Yes Yes Yes Yes

Graphical

Display /

Reporting

Yes Yes No Yes No Yes Yes

Search

Facility

Yes Yes Yes Yes Yes Yes Yes

Auto Issue

assignment

No No No No No No No

Duplicate

bug

filtering

No No No (Yes)To

some

extent

No No (Yes)To

some

extent

Bug

Prediction

(Yes)To

some

extent

No No No No No No

Change

control

Yes Yes No No No Yes No

Table 2.5: Classification Based on Tracking Characteristics

22

Some of the systems are able to provide the search facility on any of the parameters such as bug

id, severity, priority, time of submission, author, assignee, number of reassignment/history of

assignment, etc. There are number of parameters on which the search facility can be provided. Jira

has the limited parameters search options but powerful. Mantis provides the bar chart based result

of the search to show the progress of a particular bug.

As shown in table 6, some of the systems have the capability to offer features such as; automatic

ticket assignment, bug prediction, duplicate bug filtering and change control however these

functionalities are not mature.

2.4.6 Classification Based on Other Features

Any other feature may incorporate many more features that are very important but may not have

one special category. These are browsing of source code repository, version control, and

Subversion facility. Some of the above mentioned systems have the capability of these features

but they are not mature. Overall the above mentioned subcategories can be further sub divided into

specific subgroups. It will enable to provide a better picture of the bug reporting and tracking

2.5 Qualities and capabilities of a Modern Bug/Issue Tracking System

According to (Singh et al 2011), way of bug reporting is the most crucial and initial first step

towards having a bug resolved quickly and correctly. They further outline the following below as

guidelines to good reporting.

a) The system has all the ways and means of reporting the bug, i.e. by using minimum field

form, email support, attachments, web based and feedbacks, etc. It’s capable of asking

minimal requirements from the user and generate automatically most of the parameter’s

values using mathematical models, reliability models, statistical models and machine

learning techniques. This will encourage the user to report the bug.

23

b) It should be capable of automatic bug assignment by showing the list of probable fixers of

this type of bug that will save the moderator’s time in searching the developer. (Baysal et

al , 2012)

c) It should be able to identify duplicate bug entries and reassign the bug to the respective

handler otherwise provide an already implemented solution.

d) It’s capable of providing the LDAP support to enable single sign-on process. The status

of the user from reporter to developer and developer to moderator can be updated based

on his previous activities. Single user-id sign-on must be used to report/fix/monitor the

bug in/from the system.

e) User profiling can be done on the basis of their bug removal efficiency. The threshold

values of number of submitted bugs, number of assigned bugs and number of

removed/fixed bugs by a particular user should be able to put the user in the privileged

category of the user. The privileged category of user is the active and reliable user who is

continuously contributing in the development of the system. It must have the database of

all the developers who are useful for fixing of the future bugs. It means that if the bug/fix

is submitted by these groups of user, this should be accepted immediately and requires

minimal interventions in incorporating their solutions in the next build or release.

f) The system provides the exact classification of errors/bugs/patches/features using the past

report submitted. The classifiers can be developed by using the supervised classification

techniques.

g) It should be a web based interface as mentioned earlier and is available on a 24/7 basis

supporting reporting at any point of time.

h) It should be fully integrated with version control and able to communicate with major

version control system available. This will be helpful in browsing in source code history,

predicting source code change and future bug prediction using suitable data mining or

statistical techniques.

i) It should provide SOAP/Restful web services for integration with the other system.

Support of web services helpful in sharing the data from the diverse platform.

j) It also comes with an Android application for users to monitor and track the progress of

their logged defects.

24

Tracking the progress of fixing the bug process / reliability assessment requires the following in

the system:

a) It is capable of providing the current status of the bug in a graphical way. Status of the bug

can be depicted using some color coding scheme. For example, when the bug is first

submitted, the color of status can be set as Red, if the bug is assigned and in progress; the

color of status can set as yellow. If the bug is fixed, the color of status will be set to green.

The color coding scheme can use some more colors based on the value of status. A very

powerful phrase says “Picture speaks thousands of words”, It means by looking at the color

of status, the state of the bug can be decided very easily.

b) It is capable of estimating the time taken by the developer to resolve the bug. The system

must be able to calculate the time to resolve bug using the history of related bugs or

developer fixing the bug unless otherwise.

c) It is capable of generating timeline graphs for time taken and remaining time required to

fix the bug. By looking at the charts, it can be easily figured out that when moderator can

plan for the next release.

d) Mathematical models can be incorporated in the system that will predict the number of

bugs yet to be fixed and their complexity. On the basis of reported bugs, the priority and

severity can be classified from developer’s perspective. The complexity of the bugs and

their distribution will be helpful in determining the optimal effort required in assigning and

fixing of bug.

e) Imperfect debugging and error generation can also be incorporated along with the bug

prediction because there may be chances of introduction of some new bugs during bug

fixing or the bug may not be perfectly fixed due to incompetency/lack of complete

knowledge about the bugs.

f) Software reliability growth models (Singh et al, 2010)], other statistical and machine

learning models (Lyu, 2011) may be incorporated in the bug prediction. Bug predicting

tool, which may be an integral part of the bug racking and assessment system, will able to

25

provide the useful information to the active user or developer in making plans to remove

of bugs, tracking, and releases, etc.

g) It is capable of identifying the module for which bug/fix is related in a graphical way. It

should have the capability of source code visualization and co-change prediction facility.

The graphic based source code browser will be helpful in co-change prediction.

h) It is capable of managing the change management system, build release management

system, and intelligently automatic reporting system whenever there is some submission.

i) Automatic email notification whenever there is any significant updates or submission of

reports. It enables the users to get updates that are fixed recently.

j) It is capable of supporting the inclusion of test simulations in the system itself. It enables

the system to check for the left out bugs due to this fix.

k) Role based user interfaces should be provided based on access level of the user.

l) Intelligent search facility should be provided in the system which will be helpful in

detecting the duplicate bugs or related bugs.

m) It is capable of providing a graphical view of number of clients, number of releases, number

of downloads, current as well past build releases with respect to time. It should also be able

to calculate some of the derived parameters behind the box and display on the user’s screen

to facilitate the user regarding the role and value of those parameters.

n) Documentation of the bug fix capability for the developer/resolver to add when updating

the logged issue.

The above mentioned process/features if included in the system can make reporting, assignment

and reliability assessment become quite easier.

26

2.6 Issue reporting best practices

Whenever a user stumbles into a problem, they should be able to create a new issue request (ticket).

In a well-written report, one is required to deliver the following in the report: (Hauner, 2008)

a) Explain how to reproduce the problem;

b) Analyze the error so you can describe it in a minimum number of steps;

c) Include all the steps;

d) Make the report easy to understand;

e) Keep your tone neutral and non-antagonistic;

f) Keep it simple: one bug per report; and

g) If a sample test file is essential to reproducing a problem, reference it and attach it.

As was already stated, there are many ways of how a request can end “in the trash” instead of

being addressed. To raise the chance of an issue being fixed, there are couple rules which should

be followed.

Rule #1 – Write good summary

This one-line description of the problem is the most important part of the report.

a) The project manager will use it in when reviewing the list of bugs that have not been fixed.

b) Executives will read it when reviewing the list of bugs that will not be fixed. They might

only spend additional time on bugs with "interesting" summaries.

c) The ideal summary gives the reader enough information to help decide whether to ask for

more information. It should include:

i. A brief description that is specific enough that the reader can visualize the failure;

ii. A brief indication of the limits or dependencies of the bug (how narrow or broad

are the circumstances involved in this bug?); and

iii. Some other indication of the severity (not a rating, but helping the reader envision

the consequences of the bug).

27

Rule #2 – Explain how to reproduce the problem

a) First, describe the problem. What is the bug? Do not rely on the summary to do this.

b) Next, go through the steps that you used to recreate this bug.

i. Start from a known place (e.g. boot the program);

ii. Then describe each step until you hit the bug;

iii. NUMBER THE STEPS. Take it one step at a time.

c) If anything interesting happens along the way, describe it. (One must give people directions

to a bug. Especially in long reports, people need landmarks.)

d) Describe the erroneous behaviour and, if necessary, explain what should have happened.

(Why is this a bug? Be clear.)

e) List the environmental variables (configuration, etc.) that are not covered elsewhere in the

bug tracking form.

f) If the reader may have trouble reproducing the bug (special circumstances are required),

be clear about these circumstances.

g) Keep the description focused:

i. The first part of the description should be the shortest step-by-step statement of how

to get to the problem.

h) Add "Notes" after the description, if there are any. Typical notes include:

i. Comment that the bug will not show up if step X is executed between step Y and

step Z.

ii. Explain the reasoning for running this test.

iii. Explain why this is an interesting bug.

iv. Describe other variations of the bug.

Rule #3 – If two failures are visible, write two reports

Combining failures on one report creates problems:

a) The summary description is typically vague. Words like "fails" or "doesn't work" are used

instead of describing the failure more vividly. This weakens the impact of the summary.

b) The detailed report is typically lengthened. Bug reports should not read something like the

following: “Do this until that happens, in which case do not do this until the first thing is

28

completed and then the test case of the second part must also be complete, and sometimes

you may see this, but if not then that….”

c) Even if the detailed report is rationally organized, it is longer (there are two failures and

two sets of conditions, even if they are related) and; therefore, more intimidating.

d) Often, one bug gets fixed, but not the other.

e) When reporting related problems on separate reports, it is a courtesy to cross-reference

them.

Rule #4 – Eliminate unnecessary steps

Sometimes, it is not immediately obvious which steps can be dropped from a long sequence of

steps in a bug. Look for critical steps. Sometimes, the first symptoms of an error are subtle.

A list now exists of all the steps that were taken to show the error. Now, the aim is to shorten the

list. As each step is executed, any hints of errors must be examined. The following factors should

be examined:

a) Error messages (i.e. a message appeared 10 minutes ago. The program did not fully recover

from the error and the problem evident now is caused by the poor recovery.)

b) Delays or unexpectedly fast responses.

c) Display oddities, such as flashes, repainted screens, a cursor that jumps back and forth,

multiple cursors, misaligned text, slightly distorted graphics, doubled characters, omitted

characters, or display droppings (pixels that are still coloured even though the character or

graphic that contained them was erased or moved).

d) Sometimes, the first indicator that the system is working differently is that it sounds a little

different than normal.

e) An in-use light or other indicator shows that a device is in use when nothing is being sent

to it (or a light that is off when it should not be).

f) Debug messages: the debug monitor should be turned on (if it exists on the system) and

should be monitored if or when a message is sent to it.

If, what seems like a critical step has been encountered, everything else from the bug report should

be eliminated. One must now go directly from that step to the last one (or few) that shows the bug.

If this does not work, individual steps or small groups of steps can be removed.

29

Rule #5 – Variations after the main report

The failure may look different under slightly different circumstances. For example:

a) The timing changes if additional two sub-tasks are performed before the final reproduction

step is hit.

b) The failure will not show up at all or is much less serious if something else is put at a

specific place on the screen

c) The printer prints different characters (instead of the characters described) if the file is

made a few bytes longer

This is all useful information for the programmer and it should be included. But to make the report

clear:

a) It should start with a simple, step-by-step description of the shortest series of steps needed

to produce the failure.

b) The failure must be identified. (Descriptions of how it looks like or what impact it will

have.)

c) A section should be added that states "ADDITIONAL CONDITIONS" that describes, one

by one, the additional variations and the effect on the observed failure.

2.7 Software Development Life Cycle (SDLC) Model

 According to (Hoffer, 2011), a Software Development Life Cycle Model is a conceptual

model used in project management that describes the stages involved in an information system

development project, from an initial feasibility study through maintenance of the completed

application.

The following phases as in (Figure 2.3) are generally present in each and every software

development life cycle model:

i. Identifying problems, planning.

ii. Analyzing the system needs

iii. Designing the system

iv. Developing and documenting the Software

v. Testing the System

vi. Implementing and maintenance.

30

Figure 2.3: Common phases of an SDLC model (Source: Hoffer, 2011)

There are several SDLC models and these include the following:

i. Waterfall Model

ii. V-Shaped Model

iii. Evolutionary Prototyping Model

iv. Spiral Method (SDM)

v. Iterative and Incremental Method

vi. Extreme programming (Agile development)

According to (Hoffer, 2011), there are a number of SDLC models with each SDLC model having

its own advantages and disadvantages. Articles by (Breu et al, 2010) explain steps which are best

recommended when developing issue tracking systems. These steps are best aligned with

Evolutionary Prototyping Model.

In Evolutionary Prototyping Model, the prototypes evolve into the final system through iterative

incorporation of user feedback.

Below (Figure 2.4) is an illustration of the proposed methodology for this project. (Breu et al,

2010).

31

Figure 2.4: Evolutionary Prototyping Methodology (Breu et al, 2010)

The advantages of Evolutionary Prototyping Model

Since it is a series of repetitive iterations, it will be easy for customers to see some developments.

If this is the case, gaining a positive impression from the target market is attainable because they

can see how well you have been looking out towards improving systems to better handle customer

service.

Additionally, when the current systems are complicated and ineffective, the Evolutionary

Prototyping Model will become invaluable since it can pave the way for better systems through a

series of iterations. The project is only considered complete once there is already the creation of

the perfect system.

32

The disadvantages of the Evolutionary Prototyping Model

With this particular model, it may be very difficult to forecast the completion date of the project.

It is a continuous development, set up by as many iterations or prototyping as possible that it

becomes hard to tell when it will be complete. For as long as there are still significant errors in the

system, it will undergo further iterations. This can cost time and money for the company.

It is also important to note that since it is a trial-and-error process, it would require a good project

management team in terms of knowledge and skills so as to make them capable of countering

surprises along the way. Moreover, as an ever-changing process, getting dynamic and flexible

people to join would be a very good advice.

33

CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter contains the methodology the researcher considered during this research and provides

a discussion on the various approaches that were employed to achieve the stated specific objectives

of the project. It includes the data collection strategy, the system design, how the system was

implemented and tested and in order to meet the object of the research. This research project

utilized the Evolutionary prototyping design methodology where the prototypes evolve into the

final system through iterative incorporation of user feedback. The reason this design methodology

was chosen among others is explained in Chapter 2 under section 2.7.

3.2 Research Design

This section describes the research approach and strategies, why they were chosen and how they

have been used to achieve the research objectives.

3.2.1 Research Approach

The researcher used a Qualitative research design approach briefly described below.

3.2.1.1 Qualitative Approach

Qualitative Research is primarily exploratory research. Qualitative research is used to gain an

understanding of underlying reasons, opinions, and motivations. It provides insights into the

problem or helps to develop ideas or hypotheses for potential quantitative research.

Qualitative data collection methods include unstructured/semi-structured techniques such as focus

group discussions, individual interviews, and participation/observations. The sample size is

typically small, and respondents are selectively involved.

The researcher used qualitative approach because of its ability to enable gathering both unknown

software user needs and uncover all the variables surrounding issue tracking process workflows.

34

The qualitative methods deployed by the researcher included semi-structured interviews, and

literature reviews. Please refer to section 3.3.1 for the details of the specific steps for these

methods.

3.2.2 Research Strategies

The research strategies used by the researcher included the Case Study Strategy and Design

Science.

3.2.2.1 The Case Study Strategy

Case study research strategy is an empirical inquiry that investigates a phenomenon within its real-

life context. Case study research can be done on a single and/or multiple case studies, can include

both qualitative and quantitative evidence, and relies on multiple sources of evidence (Yin, 2003).

The case study research strategy proposes techniques for organizing and conducting the research

successfully and it includes six steps: Determine and define the research questions, select the cases

and determine data gathering and analysis techniques, prepare to collect the data, collect data in

the field, evaluate and analyze the data, and prepare the report.

The case study research approach was deployed by the researcher to gather an understanding of

technicalities involved in software issue tracking and management. The six steps of the case study

strategy is applied to study multiple entities, processes, activities, inputs, outputs, and actions of

software issue tracking and management in the following ways:

i. Determine and Define the Research Questions. In general, a software issue tracking system

involves multiple variables such as entity types, activities, inputs, outputs, and actions. In

this case, the researcher is primarily interested in determining all the variables,

relationships and constraints that crosscut in software issue tracking and management.

After reviewing the literature surrounding software issue tracking, the following questions

for the study were used:

a. How effective is the software issue reporting process and what impact does it have

on software issue resolution timelines and software development as a whole.

35

b. What role does lightweight communication (email, chat, instant messaging, wikis,

twitter, verbal conversation, etc.) play in the day-to-day completion of software

development tasks?

c. How does such communication apply to, interoperate with, and sprout from issue

tracking tasks (filing software bugs, working on feature requests, handling

customer support problems, etc.)?

d. How might this communication and decision making when performing ticket

assignment be better leveraged and/or supported by software development tools?

ii. Select the Cases and Determine Data Gathering and Analysis Techniques. Refer to section

3.3.1 below for detailed data gathering and analysis techniques applied by the researcher

on the case study.

iii. Prepare to Collect the Data. Refer to section 3.3.1 below for the preparatory activities

before data collection was undertaken.

iv. Collect Data in the Field. Refer to section 3.3.1 below for the interview questions prepared

from the defined research questions above.

v. Evaluate and Analyze the Data. The researcher studies all the software issue tracking and

management methods to identify all the entities, variables, actions, input and output within

the data for all the processes.

vi. Prepare the Report. The output of this phase is a software issue tracking and management

requirement document.

3.2.2.1.2 Description of the Case

Centenary Rural Development Bank Ltd started as an initiative of the Uganda National Lay

Apostolate. In 1983 as a credit Trust and later began operations in 1985 with the main objective

of serving the rural poor and contributing to the overall economic development of the country. In

1993, Centenary Rural Development Bank Ltd was registered as a full service commercial Bank.

Today they are the leading Microfinance Commercial Bank in Uganda serving over 1,400,000

customers. Centenary Rural Development Bank services can be accessed across our 65 branches,

167 ATMs and the phone banking (CenteMobile) platform.

36

Centenary Bank uses a number of financial systems, to perform its day to day transaction

processing tasks and banking automations. Among these systems is a core banking system called

Equinox and is very key in automation of its banking and financial activities. This case study was

chosen in regards to how the operational and maintenance phase of Equinox core banking system

is done. Since Equinox is a big system, its users encounter issues from time to time. Equinox

system users range from; accountants in back office operations, Tellers in the front office, IT staff

who are responsible for user support, configurations, maintenance of the system (both Application

and database). When Equinox users (Tellers, accountants, IT officers and others) encounter

software related issues as they interact with the system, they contact the banking system support

staff under the IT department who then assist them with in resolving the issue. If this software

issue cannot be achieved, the banking system support staff then log it onto JIRA. JIRA is a software

Issue tracking system that Centenary bank’s banking system support staff uses to communicate

software issue to their Core banking System vendor, so as to get assistance in resolving the

software issue. Response and collaboration is after them carried out on JIRA until the issue is

achieved and closed after application of the solution. In this research, the researcher used this case

study in finding out how Centenary bank’s banking system support staff currently use JIRA in

issue tracking, the challenges they face , and how they feel that these challenges can be addressed

in order to better issue tracking and resolution timelines.

3.2.2.2 Design Science

Design Science is a research methodology that offers specific guidelines for evaluation and

iteration within Information Systems related research projects. The design science research

methodology (DSRM) incorporates principles, practices, and procedures required to carry out

research and meet three objectives: it is consistent with prior literature, it provides a nominal

process model for doing DS research, and it provides a mental model for presenting and evaluating

Design Science research in Information Systems (Roland et al , 2011).

Design Science research involves the creation of knowledge through the design of artefacts and

analysis of the use of such artefacts in order to improve understanding the behavior of Information

Systems (Roland et al , 2011).

37

Artefacts used in design science may include algorithms, user interfaces, and system design

methodologies.

The Design Science IS framework found as quoted in (Hevner et al, 2004) overlays a focus on

three inherent research cycles. .i.e.

i. The Relevance Cycle: This bridges the contextual environment of the research project with

the design science activities.

ii. The Rigor Cycle: This connects the design science activities with the knowledge base of

scientific foundations, experience, and expertise that informs the research project.

iii. The Design Cycle: This iterates between the core activities of building and evaluating the

design artifacts and processes of the research. These three cycles must be present and

clearly identifiable in a design science research project.

The following below briefly expands on activities the researcher performed in each cycle.

i. The Relevance Cycle: The researcher gathered requirements from the Case study and also

reviewed literature on similar issue tracking systems to clearly establish the Problems and

Opportunities. The researcher further tested the system with the users to ensure it addresses

the problems.

ii. The Design Cycle: Here the researcher built a prototype based on the requirements and

then gave it to the users for evaluation.

iii. Rigor Cycle: Researcher reviewed the results from the testing and evaluation as assessed

by the experts in issue tracking systems.

3.3 Evolutionary Prototyping software development life cycle model

The methodology used for this research project is evolutionary Prototyping software development

life cycle model. Literature on this evolutionary Prototyping model and why it has been chosen

can be found under section 2.7 of this research proposal. Below is an illustration of the

development methodology for this project (Breu et al, 2010).

38

Figure 3.1: Methodology (Evolutionary Prototyping Methodology (Breu et al, 2010).)

3.3.1 Systems Requirements Gathering and Analysis

The main objective of this stage is to document requirements for the software issue tracking

system. For the researcher to study and analyze software issue logging and resolution process flow

for both existing and needed functionality, the following are methods used:

i. Review of literature

ii. Interviews

To gather complete and solid facts during this phase of requirement gathering and analysis, the

researcher ensured that the following are done before and during each method used to gather the

requirements:

a. Getting user cooperation

b. Choosing the facts to gather

c. Initiating fact gathering. Through announcements and kick-off meetings by the

management.

d. Choosing where to get the facts

e. Introduction to the employees at the case study.

f. Proper recording technique of the facts gathered.

g. Keeping the data collected very well organized.

39

Review literature

This involved reviewing published literature namely journals and books in regard to software issue

tracking and existing software issue tracking system. Literature review helped the researcher to

gain a full understanding of the research domain, appreciate what has been done and identify the

gaps within the existing systems and hence identify possible improvement options to the subject

area. The researcher also got a better understanding of what areas he needs to focus while gathering

his interview question for the process.

Specifically the following literature was considered:

a. Previously done works in this area of software issue tracking and software issue tracking

system.

b. Methods others have used to tackle similar software issue tracking problems.

c. Software issue tracking in software powered companies.

Interviews

The researcher interviewed core banking system support staff and IT managers at Centenary Bank.

This method was chosen because interviews of individuals and small groups require less

stakeholder commitment than large workshops. And at the same time, interviews provide an

opportunity to explore or clarify topics in more detail. Semi-structured interviews were conducted.

The semi-structured interviews were also undertaken in a question-and-answer format. This is

more flexible and was rightly used to gather general information about the system (JIRA) currently

used at the place of case study. Here the respondents were free to answer in their own words. In

this way their views are not restricted. So the researcher got a bigger area to further explore the

issues pertaining to a problem.

The researcher also took some time to ask questions at Neptune, the Software vendor for Equinox

Core Banking System. While here, the researcher interviewed the Head of Technical support for

clarity on how they assign, track, manage and resolve the issues that will have been logged onto

JIRA.

Interviewees were selected from the core banking system support staff and IT technical managers

and interview was done in one phase that combined gathering and validating of the facts;

40

A sample interview Guide used by the researcher was attached in the appendixes section.

The context of questions that was used in the interview where circling around practices of issue

tracking carried out at the bank.

Documentation of the software issue tracking system requirements and prototype

development

After data has been collected and analyzed, the requirements document was drafted, reviewed with

software issue tracking system users and research project supervisor. A prototype was developed

based on the requirements document and shared the users to certify whether all the requirement

had been captured. This prototype was continuously enhanced basing on the feedback of the users

until it was able to capture all the necessary requirements

3.3.2 System Design

The purpose of the design phase is to plan a final solution of the problem as was specified by the

requirements document. This phase was a main step in modelling out a quality software issue

tracking system, and has a major impact on the later phases, particularly implementation, testing

and maintenance. The output of this phase was a design document containing a blue print or plan

for the solution, and is used later during implementation, testing and maintenance.

The design document included three main architecture models for the software issue tracking

system i.e. information model, functional model and data model.

i. The information model contained a high level context diagram showing the

software issue tracking system with its possible interactions and

functionalities/modules. UML language was used to model the context diagram.

ii. The functional model has a detailed design for the internal logic of each of the

modules specified in context model. During this phase further details of the data

structures and algorithmic design of each of the modules is specified. UML

language was used to model the modules.

iii. The data model was also designed using UML language. This model specifies all

the data aspects of the system such as entities involved, relationships between

entities and attributes of the entities. This model is inform of a Data Flow Diagram

and an Entity Relationship Diagram.

41

The design models were tested and reviewed with the students and research project supervisor

before being passed for the next stage i.e. Implementation / Coding stage.

System Implementation / Coding

Once the design is complete, most of the major decisions about the system would have been made

and what is left for this stage is to translate the designs of the system into code and scripts in a

given programming language to implement the design in the best possible manner. Since a well

written code reduces the testing and maintenance effort, and the testing and maintenance cost of

software are much higher than the coding cost, the goal of this phase was to reduce the testing and

maintenance effort. Hence, during phase, the focus was on developing programs that are easy to

write, simple, clear, and documented.

The researcher implemented the system designs using an MVC (Model View Controller) model.

MVC separates the Model (Data), View (Screen/View) and Controller parts of a system making it

easy to edit one without affecting the other hence easing maintenance, troubleshooting, and

integration.

a) The View which is the user screens/views were implemented using Java Server Pages

(JSP).

b) The Controller was implemented using Java Beans.

c) The Model was implemented using MySQL database management system server.

 System Integration / Testing

Testing is the major quality control measure that was employed during software development and

its basic function was to detect errors in the software. This normally goes hand in hand with

integration as at this step, we are aligning and integrating the key processes and functions of the

issue tracking system to those of the company/ area where tests was conducted.

During requirement analysis and design, the output is a document that is textual and non-

executable. After the implementation, computer programs are available that can be executed for

testing phases. This implies that testing was not only used to uncover errors introduced during

42

coding, but also errors introduced during the previous phases. Thus, the goal of testing was to

uncover requirement, design or coding errors in the project. The researcher employed different

levels of testing.

The starting point of testing was unit testing. Here, tests were separately performed simultaneously

with the coding of each component. After this, the components are gradually integrated into

subsystem, which are then integrated and eventually form the entire system. During integration of

components, integration testing was performed. The goal of this testing was to detect design errors,

while focusing on testing the interconnection between components and also the entire process flow

of the system customised for this test area / company.

After the system is put together, general system testing was performed. Here the system was tested

against technical system requirements to see if all the requirements are met and the system

performs as specified by the requirements document. Finally, acceptance testing is performed to

demonstrate to the users and IT managers, in the real life test scenarios with live data.

For testing to be successful, proper selection of test cases is essential. There are two different

approaches taken to selecting test cases:

i. Functional (black box) testing. In functional testing the software for the module to be tested

is treated as black box, and then test cases are decided based on the specifications of the

system or module. The focus is on testing the external behaviour of the system. Functional

testing was used for higher levels of testing.

ii. Structural (white box) testing. In structural testing the test cases are decided based on the

logic of the module to be tested. Structural testing was used for lower levels of testing.

43

CHAPTER FOUR

SYSTEM ANALYSIS AND DESIGN

4.0 Introduction

This chapter summarizes the findings of this research. It lists and describes the functions required

to improve the issue tracking processes, ensure efficiency and effectiveness in issue tracking

systems basing on the requirements gathered. These requirements were gathered by interviews,

and literature review as indicated in the methodology chapter (Chapter 3). This section also

includes an analysis of the data collected from the case study through interviews and observations

that led to the conclusion of the functional and non-functional requirements. This chapter also

presents the functional designs, logical database design, entity relationship diagrams, physical

database design and user interface design

4.1 Requirements Gathering

Here, the researcher used the two methods as mentioned in the methodology chapter to gather

requirements. Each method played a role as indicated below;

4.1.1 Review of literature

This involved reviewing published literature namely journals and books in regard to software issue

tracking and existing software issue tracking system. Literature review helped the researcher to

gain a full understanding of the research domain, appreciate what has been done and identify the

gaps within the existing systems and hence identify possible improvement options to the subject

area. But most important of all, the researcher also got a better understanding of what areas he

needed to focus on while gathering his interview question for the process.

4.1.2 Interviews

The researcher mainly interviewed core banking system support staff and IT managers at

Centenary Bank. Interviews were made using the Interview guide indicated under the methodology

chapter above.

44

The researcher also took some time to interview the Head of Technical support at Neptune

(Equinox Core Banking System) for clarity on how they assign, track, manage and resolve the

issues that will have been logged onto JIRA.

The table below shows the questions the researcher focused on to help gather requirements;

Interviewer Questioning Context Summary Findings From Interviewee’s

Responses

What issue tracking system do you use?

Have you always used this system in

your current position, or have you

switched recently?

Issue tracking system being used is called JIRA and

they have used it for about 8 years now, in regards

to the support of their Core Banking System.

Please give me a tour of the issue

tracking system you use

A tour through JIRA brought out that the following

issue tracking functionalities were fully supported;

Timely Updates, Graphical Display, Reporting,

Search Facility.

Can you please describe the primary

purpose of issue tracking systems from

your perspective?

In their own understanding of issue tracking

systems, the various interviewee indicated that an

issue tracking system is a system where issues with

their Core Banking System are communicated to the

system vendor-Neptune, for addressing.

What are the different roles and

responsibilities of the people working

with the issue tracking system in your

department? Do certain people have

different levels of access to the issue

tracking database than others?

Interviewee from the bank side indicated that

business system support staff in IT department, are

responsible for logging the issue from the users,

interacting with developers, tracking progress of the

issue and applying the solution once process is done.

Different business system support staff have

different levels of access. Only registered users on

45

a) Is there a QA (Quality

Assurance) process?

b) Do outside stakeholders (users)

have the ability to enter bugs

and/or feature requests

directly/indirectly into the issue

tracking system?

c) Does management make use of

any reports or metrics from the

issue tracking system?

JIRA can enter bugs / requests. Their management

uses the reports but not a very large scale. QA on

the bank side is done by testing solution before

deployment on live environment.

Interviewee from the Software vendor side indicated

that system support staff in Support department, are

responsible for viewing logged issues, interacting

with issue loggers, and providing a solution.

Different system support staff have different levels

of access. Only registered users on JIRA can view

and comment on bugs / requests. Their management

uses the reports on a very large scale. QA on the

software vendor side is done by testing solution

before sending to client.

What information is usually tracked with

each issue?

Information tracked is; What is the issue, when does

it occur, where does it occur, how does it occur, what

is the impact of occurrence, who has logged it, who

has It been assigned too.

Please walk me through the process of:

a) Logging a new issue into the issue

tracking system.

b) Starting to work on resolving a bug.

c) Starting to work on implementing a

new feature

On the bank side, It was clear that process of logging

a new issue was well understood by the majority

however they were not good at attaching the relevant

information. Also when it came to implementing a

solution, it was better when the developer did this

themselves

What is involved in the process of

assigning a bug to a user and what is

taken into consideration when choosing a

resolver to handle the bug?

On the bank side, the business system support staff

simply logs the issue on JIRA and assign it to the

Software Vendor-Neptune.

46

a) Experience on similar types of

issues?

b) Amount of work they are currently

handling?

c) Others please specify is available.

On the Software Vendor side-Neptune, the

Moderator/Head of Support manually assigns the

issue basing on: Area of expertise, Experience on

similar types of issues, Amount of work they are

currently handling, who they feel can deliver on

time, intuition, etc.This is not done automatically.

What communication channels do you

use to communicate with your colleagues

and other project stakeholders? How

frequently do you use each

communication channel?

Common Channels used for communication

between the bank’s business system support staff

and Software vendors is Email and Instant

messaging such as Skype, verbal conversation -

(face-to-face, phone/Skype)

Do you have a preference as to which

communication channel you use? If so,

under what conditions and why? a.

The preferred communication channel is Email

simply because Emailing is a formal and

professional way of exchanging important

communication is the business world, Plus it

provides an archived trail / communication history

for future references.

When reporting an issue, how does the

system handle duplicate reporting?

When an issue is reported, regardless of whether it

has been logged before or resolved before, JIRA

accepts the issue and assigns it to the resolver who

may later learn that it was resolved before, or even

never get to know it was resolved before meaning he

goes through the trouble shooting and resolution

process again till a solution is provided.

What types of information do you

frequently require from others in order to

complete your day-to-day issue tracking

and related software development tasks?

How do you usually obtain this

Information that Neptune Staff (Software vendor)

often require includes: instructions on how to

reproduce the issue, the severity of the bug,

Corresponding Screenshot/Attachment/logs can also

be uploaded capturing the actual

47

information? How frequently do you find

yourself looking for these kinds of

information

operation/output/message. This information is key

to any issue resolution.

Table 4.1: Results from the interview

Below is a summary of the features identified from the interviews and interaction with the key

identified staff for each process. It’s from these results that functional and non-functional

requirements were identified.

 Tracking

Tool

Timely

Update

Graphical

Display /

Reporting

Search

Facility

Auto Issue

assignment

Duplicate

bug

filtering

Bug

Prediction

Change

control

JIRA

Yes Yes Yes No No No Yes

Octopus

(Proposed

Issue

Tracking

System)

Yes Yes No Yes No Yes Yes

Table 4.2: Summary of the results in terms of functional requirements

48

 4.2 Functional Requirements

1. There is a function to handle auto-ticket assignment. This will be based on the information

supplied and will help quicken the ticket resolution process.

2. The validator function shall also be responsible for reviewing duplicates in tickets logged.

This will help with quick issue resolution and data integrity.

3. There is a function for performing bug prediction basing on recently resolved bugs

4. There is a function for tracking change control process of patches being deployed to resolve

issues.

5. The system is able to capture necessary information pertaining a ticket on a project. All

tickets will be specific to a project.

6. There is a function that will verify information captured and ensure it is correct and valid.

7. There is a function responsible for tracking status of a ticket and alert the responsible users

whenever necessary and need arises.

8. There is a function to review any outstanding tickets and report accordingly. If need be, the

function will reassign the tickets.

9. There shall be a function that will provide an external API for third party applications to

interact with the system.

4.3 Hardware and Software Requirements

The IT personnel were also interviewed as indicated on Appendix 1, 2 and 3 under the section of

Hardware and Software availability to ascertain the available hardware and software. A business

process workflow management system to automate business processes seamlessly should have the

following minimum hardware and software requirements:

The client will contribute to relevant process flows in a manner that helps control operational over

heads and risks.

The minimum entry level server hardware and software configuration required to run consolidated

services are as follows;

i. Intel(R) Core 2 Duo CPU/1.8Ghz or Higher

ii. 16 GB RAM or Higher

iii. 1000GB hard-disk

iv. Monitor, Keyboard and Mouse

49

v. Windows 2008 Server or Higher

vi. Network Interface Card(s)

vii. Secure connection links to the remote terminals

4.4 Non Functional Requirements

4.4.1 Authentication model

The system has an authentication mechanism for user verification and validation so as to allow

users to access resources based on their system access rights and roles. Although this

authentication model primarily helps prevent unauthorized system access, it further kick starts

the issue logging process by channeling the user to their respective screen and pushing their input

to the relevant process queues as will be demonstrated.

Below is a representation of the functional design model.

Figure 4.0: authentication model

50

4.4.2 User Error handling model

The system has a proper error or exception handling process on any malfunctions so as to alert the

user of the exception. Octopus supports three types of error handling modes,

a) Logging errors on a log file that can be shared with the system maintainer.

b) Displaying alert dialogs on the user interface.

c) Sending email notifications to the maintainer in cases of critical system processing errors.

The figure below shows how the system shall handle error and exceptions encountered during

logic processing.

Figure 4: Error handling model

51

4.4.3 Validation of user roles

The system also has the ability to validate and manage user roles and system access depending on

the user role assigned by the system admin.

Figure 4.2: validation model

This functionality allows for the system to validate and process valid and authorized user requests.

52

 4.5 Functional Design

This design portrays the different processes that will allow the user to interact with the Octopus

issue tracking system.

This was illustrated using a context diagram i.e. context level 0 and context level 1. The overall

user and system interaction is demonstrated below. This involves an active authenticated user

initiating the process of bug tracking.

Figure 4.3: Context Diagram (Level 0)

Figure 4.4: Context Diagram, Level 1(Data Flow Diagram)

53

4.5.1 System Functional Design

The following system functionalities is be availed;

1. There is a function to handle auto-ticket assignment. This will be based on the information

supplied and will help quicken the ticket resolution process.

2. The validator function shall also be responsible for reviewing duplicates in tickets logged.

This will help with quick issue resolution and data integrity.

3. There is a function for performing bug prediction basing on recently resolved bugs

4. There is a function for tracking change control process of patches being deployed to resolve

issues.

5. The system is able to capture necessary information pertaining a ticket on a project. All

tickets will be specific to a project.

6. There is a function that will verify information captured and ensure it is correct and valid.

7. There is a function responsible for tracking status of a ticket and alert the responsible users

whenever necessary and need arises.

8. There is a function to review any outstanding tickets and report accordingly. If need be, the

function will reassign the tickets.

9. There shall be a function that will provide an external API for third party applications to

interact with the system.

4.5.2 Database Design

4.5.2.1 Logical Database Design

This subsection of the design shows the attributes of every entity in the database. Primary keys are

bolded and foreign keys are underlined. The system under study will be referred to as Octopus and

its logical model is described below.

a) This table below captures the details of a user of the system.

SYSUSER {Id, CODE, PASSWORD, EMAIL, CREATE_DT, IS_ADMIN, ACCESS_LEVEL,

STATUS, FIRST_NM, LAST_NM, GENDER, PHONE, LAST_MOD_DT, SUPERVISOR_ID }

b) This table captures information regarding a project created by a system user.

54

Project {Id, NAME, PROJ_DESC, CREATE_DT, LAST_MOD_DT, STATUS, OWNER,

VISIBILITY, ACCESS, PARTICIPANTS, URL, CREATOR, ARCHITECTURE}

c) This table captures information regarding a user access defined by a system owner/admin.

SysAccess {Id, LEVEL, LEVEL_DESC, STATUS, MAX_ENTRIES, CREATE_DT,

LAST_MOD_DT, LEVEL_SHORT_NM}

d) This table captures information regarding a ticket created on a project by a system user

Ticket {Id, NAME, TICKET_DESC, PROJECT_ID, PROJ_CONTACT, PRIORITY,

CATEGORY, CREATOR, OWNER, STATUS, RESOLVE_DT, LOG_DATE, LAST_MOD_DT,

TARGET_DT, LOG_FILE, DOC_FILE}

e) This table captures information regarding a comment on a ticket created on a project by a

system user

Comment {Id, COMMENT_NM, COMMENT_DESC, COMMENTER_REF, TICKET_REF,

CREATE_DT, ATTACHMNT, STATUS}

f) This table captures the patches delivered on a ticket by a resolver.

TICKET_PATCH {Id, NAME, HASH_REF, PATCH_LOC, OWNER_ID, LAST_MOD_DT,

TICKET_ID}

g) This table captures all system alerts, logs and notifications; it’s also used to place system

and user mail requests to be forwarded

Alerts {Id, SUBJECT, MESSAGE, RECIPIENT, STATUS, LOG_DT, LAST_MOD_DT,

ATTACHEMENT}

h) This table captures all access levels defined for the various user groups.

Alerts {Id, USR_ID, LEVEL_ID, STATUS, CREATE_DT, LAST_MOD_DT, LAST_MOD_DT,

ATTACHEMENT}

i) This view is used to compute user to ticket statistics

USER_STATS {Id, CODE, EMAIL, TOTAL_TICKETS, OPEN_TICKETS,

CLOSED_TICKETS, PERCENT_OPEN, PERCENT_CLOSED}

55

4.5.2.2 Physical Database Design

Table Name SQL Script for implementation.

ACCESS CREATE TABLE `access` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `USR_ID` int(11) NOT NULL,

 `LEVEL_ID` int(11) NOT NULL,

 `STATUS` varchar(10) NOT NULL,

 `CREATE_DT` date NOT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 PRIMARY KEY (`ID`),

 UNIQUE KEY `USR_ID` (`USR_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

ALERTS CREATE TABLE `alerts` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `SUBJECT` varchar(50) NOT NULL,

 `MESSAGE` text NOT NULL,

 `RECIPIENT` text,

 `STATUS` char(1) NOT NULL,

 `LOG_DT` date NOT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 `ATTACHEMENT` text,

 PRIMARY KEY (`ID`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT

CHARSET=latin1

COMMENT CREATE TABLE `comment` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

56

 `COMMENT_NM` varchar(300) NOT NULL,

 `COMMENT_DESC` text NOT NULL,

 `COMMENTER_REF` int(11) NOT NULL,

 `TICKET_REF` int(11) NOT NULL,

 `CREATE_DT` date NOT NULL,

 `STATUS` char(1) NOT NULL DEFAULT 'N',

 `ATTACHMNT` varchar(200) DEFAULT NULL,

 PRIMARY KEY (`ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

PROJECT CREATE TABLE `project` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `NAME` varchar(150) NOT NULL,

 `PROJ_DESC` text,

 `CREATE_DT` date NOT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 `STATUS` enum('active','closed','watching') NOT NULL,

 `OWNER` int(11) NOT NULL,

 `VISIBILITY` enum('private','public') NOT NULL,

 `ACCESS` enum('read','write','admin') NOT NULL,

 `participants` text,

 `url` varchar(150) DEFAULT NULL,

 `creator` int(11) NOT NULL,

 `ARCHITECTURE` text,

 PRIMARY KEY (`ID`),

 UNIQUE KEY `NAME` (`NAME`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT

CHARSET=latin1

SYSCCESS CREATE TABLE `sysaccess` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

57

 `level` int(11) DEFAULT NULL,

 `LEVEL_DESC` text,

 `STATUS` varchar(10) NOT NULL,

 `MAX_ENTRIES` int(11) NOT NULL,

 `CREATE_DT` date NOT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 `LEVEL_SHORT_NM` varchar(150) DEFAULT NULL,

 PRIMARY KEY (`ID`),

 UNIQUE KEY `LEVEL` (`level`),

 UNIQUE KEY `level_2` (`level`),

 FULLTEXT KEY `LEVEL_SHORT_NM`

(`LEVEL_SHORT_NM`),

 FULLTEXT KEY `LEVEL_DESC` (`LEVEL_DESC`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT

CHARSET=latin1

SYSUSER CREATE TABLE `sysuser` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `CODE` varchar(10) NOT NULL,

 `PASSCODE` varchar(200) NOT NULL,

 `EMAIL` varchar(150) NOT NULL,

 `CREATE_DT` date NOT NULL,

 `IS_ADMIN` int(11) NOT NULL DEFAULT '1',

 `ACCESS_LEVEL` int(11) NOT NULL,

 `STATUS` varchar(10) NOT NULL,

 `FIRST_NM` varchar(25) DEFAULT NULL,

 `LAST_NM` varchar(25) DEFAULT NULL,

 `GENDER` char(1) DEFAULT NULL,

 `PHONE` varchar(15) DEFAULT NULL,

58

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 `SUPERVISOR_ID` int(11) DEFAULT NULL,

 PRIMARY KEY (`ID`),

 UNIQUE KEY `CODE` (`CODE`),

 UNIQUE KEY `EMAIL` (`EMAIL`)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT

CHARSET=latin1

TICKET CREATE TABLE `ticket` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `NAME` varchar(300) DEFAULT NULL,

 `TICKET_DESC` text NOT NULL,

 `PROJECT_ID` int(11) NOT NULL,

 `PROJ_CONTACT` varchar(50) DEFAULT NULL,

 `PRIORITY` enum('critical','high','moderate','low') NOT NULL,

 `CATEGORY` enum('project','knowledge

gap','enhancement','bug','other') DEFAULT NULL,

 `CREATOR` int(11) NOT NULL,

 `OWNER` int(11) NOT NULL,

 `STATUS` enum('open','closed') DEFAULT NULL,

 `RESOLVE_DT` date DEFAULT NULL,

 `LOG_DATE` datetime DEFAULT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 `TARGET_DT` date DEFAULT NULL,

 `LOG_FILE` varchar(50) DEFAULT NULL,

 `DOC_FILE` varchar(50) DEFAULT NULL,

 PRIMARY KEY (`ID`),

 FULLTEXT KEY `NAME_3` (`NAME`,`TICKET_DESC`),

 FULLTEXT KEY `TICKET_DESC` (`TICKET_DESC`)

59

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT

CHARSET=latin1

TICKET_PATCH CREATE TABLE `ticket_patch` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `NAME` varchar(30) NOT NULL,

 `HASH_REF` text,

 `PATCH_LOC` text,

 `OWNER_ID` int(11) NOT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 `TICKET_ID` int(11) NOT NULL,

 PRIMARY KEY (`ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

USER_STATS CREATE ALGORITHM=UNDEFINED

DEFINER=`root`@`localhost` SQL SECURITY DEFINER VIEW

`user_stats` AS select distinct `usr`.`ID` AS `ID`,`usr`.`CODE` AS

`CODE`,`usr`.`EMAIL` AS `EMAIL`,(select count(0) from `ticket`

where (`ticket`.`OWNER` = `usr`.`ID`)) AS

`TOTAL_TICKETS`,(select count(0) from `ticket` where

((`ticket`.`OWNER` = `usr`.`ID`) and (`ticket`.`STATUS` = 'open')))

AS `OPEN_TICKETS`,(select count(0) from `ticket` where

((`ticket`.`OWNER` = `usr`.`ID`) and (`ticket`.`STATUS` = 'closed')))

AS `CLOSED_TICKETS`,(select round(((count(0) * 100) / (select

count(0) from `ticket` where (`ticket`.`OWNER` = `usr`.`ID`) having

(count(0) > 0))),2) from `ticket` where ((`ticket`.`OWNER` =

`usr`.`ID`) and (`ticket`.`STATUS` = 'open'))) AS

`PERCENT_OPEN`,(select round(((count(0) * 100) / (select count(0)

from `ticket` where (`ticket`.`OWNER` = `usr`.`ID`) having (count(0)

> 0))),2) from `ticket` where ((`ticket`.`OWNER` = `usr`.`ID`) and

60

(`ticket`.`STATUS` = 'closed'))) AS `PERCENT_CLOSED` from

`sysuser` `usr` group by `usr`.`ID`

Table Name SQL Script for implementation.

ACCESS CREATE TABLE `access` (

 `ID` int(11) NOT NULL AUTO_INCREMENT,

 `USR_ID` int(11) NOT NULL,

 `LEVEL_ID` int(11) NOT NULL,

 `STATUS` varchar(10) NOT NULL,

 `CREATE_DT` date NOT NULL,

 `LAST_MOD_DT` timestamp NOT NULL DEFAULT

CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 PRIMARY KEY (`ID`),

 UNIQUE KEY `USR_ID` (`USR_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Table 4.3: Physical Database Design

4.5.2.3 Entity Relationship Diagram

The Entity Relationship Diagram, often an extension of the logical data model is a graphical

representation of the entities and their relationships with one another within the Octopus issue

tracking system. It helps in the organization of data in the database. The Octopus issue tracking

system will have a database called Octopus and in it will be at least 18 entities that will relate to

one another as shown in the Entity Relationship Diagram below.

61

Figure 4.5: Entity Relationship Diagram

4.6 User Interface Design

The user interfaces are intended to help the user access the system in an organized and friendly

way. It provides a user friendly format and display of system components and information with

which a user can interact with the system components and database in order to provide and process

the required services.

 4.6.1 Welcome/Login Page

The welcome page will be the home and login page as well for the Octopus issue tracking system.

This page also has link to register a user, Projects which allows user to view all public project

listings.

62

 Figure 4.6: Welcome/Login Page

4.6.2 Dashboard Page

This page will show a summary of all the projects, tickets and ticket progress in a general overview

for the logged in user.

Figure 4.7: Dashboard Page

63

4.7 Network and System Design

System architecture defines the technical environment of the system and in cooperates the network

connection model, hardware and software specifications, the design tools used and the security

design model. The diagram below is an illustration of the components and how they fit together.

The network model describes the communication infrastructure layout on which the new system

is to operate. The components of the model include but not limited to:

Figure 4.8: Network and System Design

System users or clients and other external stakeholders who have access to computers with an

internet connection can access the Octopus issue tracking web application and service from

anywhere. The system admin and other users such as reporters, resolvers or developers can also

access the system from both within the organization intranet and the outside using the internet.

They will use either their personal computers or company computers to access the platform. These

computers come in two main forms, laptops which are light weight and can be carried around or

desktop computers which are stationary running either Windows, Linux or MacOSx.

A network router will provide the network service access to the client machines on the network

preferable a CISCO router LAN.

64

4.8 System Security

In every data related system, security is a major non-functional requirement especially when lots

of people can access the system and run tests. Hackers and other network sniffers can particularly

be a threat to the system hence requiring proper security measures to be put in place. Among these

security features is data encryption, firewalls and other data verification processes and sub routines

involved in securing data.

Octopus applies security measures at the physical and logical levels. The physical level involves

lock and restrain of physical Octopus servers from general access. This will only permit authorized

personnel to access the servers and make changes.

Logical level of security tightly couples with the network security involved. Securing the network

or LAN and adding layers of encryption to the communication protocols and firewalling the

network from external unpermitted access will greatly improve the security level of the Octopus

issue tracking system.

The other aspect of the Logical security enhancement involves having a proper authentication sub

system in Octopus system for session handling and access control into the system for instance,

maximum number of failed login attempts, password strengths and combinations.

Finally, there will be a sub routine or service to perform daily backup of the system to ensure that

it can be restored should need arise. The process will be automated and will work in two ways.

First one being database level replication to other databases on different sites, and the second being

dumps of the database and application taken and backed up on different network server.

Uninterrupted power supplies will be availed to help sustain the system in case there is a short

power outage so the system can go on running as expected.

65

4.9 Conclusion

This chapter has the researcher providing a description of the logical database and how it will be

implemented. It’s further culminated into the entity relationship diagram. In order for the users to

interact with the system, the researcher proposed the designs of the user interfaces including a

report that can accessed by the users. With this guide, the researcher and the system developer

should be able to implement the Octopus issue tracking system as described in this chapter.

66

CHAPTER FIVE

SYSTEM IMPLEMENTATION

5.0 Introduction

This chapter provides a description of the steps that where undertaken to enable the coding of the

Octopus issue tracking system and chapter discusses the conversion of the system designs into a

proper working issue tracking system. These include the acquisition of the implementation tools

and steps for the installation of the acquired development software. In this chapter, the researcher

also provides a description of the implementation of the databases and the user interfaces and

finally the descriptions of the processes that can be undertaken when installing the system on

another computer as expected.

5.1 Acquisition of development tools

Apache tomcat and Eclipse IDE are the software of choice, both being open source, versatile and

free to use with a wide market share. Eclipse being the leading IDE for Java development and

tomcat, a robust efficient and out of the box servlet engine.

Both these software were acquired from the internet, Eclipse being downloaded from the official

Eclipse Software Foundation site and Apache Tomcat 7 from The Apache Software Foundation,

both companies renowned for their contributions to the open source community.

Due to time constraints tied to the project life cycle, the researcher sourced support from a systems

developer to assist in the development of the system. The development took approximately 2

weeks. The developer involved used the test driven development to quicken the process.

5.2 Installation of the development tools

The researcher installed the development tools mentioned above so as to initiate the development

process involving the coding phase and testing as well. Unit testing helped quicken the process

where each functionality developed emerged from its corresponding Testcase using the Junit

67

testing library. The steps below provide instructions on how to install the required development

tools priori to development.

5.2.1 The Eclipse Integrated development environment Neon Release (4.6.0)

1. Ensure you have an active internet connection on your computer

2. Open any browser of your choice preferably Chromium based products such as Google

Chrome or Opera.

3. Launch Opera, and visit http://eclipse.org and click on the download button to get the latest

Eclipse Java EE IDE for Web Developers.

4. Once the download has completed, unzip the folder and double click on the eclipse.exe to

launch the environment.

5. Download Java from http://oracle.com if you don’t already have it. Ensure to download

the right eclipse architecture version for the Java version. The instructions are stated clearly

on the eclipse website.

5.2.2 The Apache Tomcat servlet engine Release (7.0.7.0)

1. Once you’ve installed Eclipse, it’s time to install Tomcat from Apache as your servlet

engine. Open https://tomcat.apache.org/download-70.cgi to get Tomcat version 7.

2. Download the widows services version for 32/64bit Windows Service installer to a location

you can easily access and have write access to.

3. Double click on the installer and install following the default process. The default

selections are efficient enough for starters and should get you started.

4. The figure below shows the tomcat installation screens. Check the Host Manager option to

enable remote installation of web apps over the web interface.

5. Define a username and password to use to access when deploying web apps to the tomcat

servlet engine as in figure 5.3

http://eclipse.org/
http://oracle.com/
https://tomcat.apache.org/download-70.cgi

68

Figure 5.1 Installation of Tomcat

Figure 5.2 Installation of Tomcat

69

Figure 5.3: Define username/password for tomcat access

Figure 5.4: Installation process

70

After the installation is complete, you can find Tomcat under the directory you specified earlier

during the installation process from which you can launch the service control using the

services.msc command and start or stop tomcat from.

Octopus uses a built in database SQLite but supports other database engines such as MySQL,

PostgreSql, Oracle and Sybase out of the box among other. By default Octopus uses the SQLite

database engine that comes embedded within the application for a quick start.

5.3 The Coding phase

In this phase, the physical design was structured into functional computer code following the object

oriented approach as the languages chosen adhere to the Object oriented programming principal.

This allows for reusability and code maintenance among other features. The coding was also driven

by unit testing using the Junit testing library. This allowed for development of functionality needed

and removed any redundant unused code.

 5.3.1 Database Implementation.

The Octopus issue tracking system is partly composed of a database whose name can be changed

and specified in the configuration but the default name used is Octopus_db following the

application name. This database was primarily designed using the SQLite database but has in-built

conversions to handle the different database vendor data types and structure. Supported database

vendors include SQLite, Oracle, MySQL, Sybase, PostgreSql and SQLServer. Octopus creates its

own tables provided the database type and name are specified. The tables in the database

correspond to the Entity classes in the Application and migration is handled automatically by the

Octopus SQL engine.

71

The database has nine entities as shown in figure 4.3 above. This was followed by testing the

constraints defined through attempting to enter sample data into random tables with foreign keys

and the results were as expected. The data was rejected with foreign key attribute errors thrown.

Below is a screen caption of the database tables in the SQL Table generation engine.

 Figure 5.3 Database Implementation

5.3.2 User interface and logic.

The Octopus system deployment is handled by tomcat web interface. The Host Manager Interface

helps with the deployment of web apps to the tomcat servlet engine. Eclipse IDE was used to

develop the web app and the SQL engine, Bootstrap and JQuery JavaScript and Cascading Style

sheets libraries were used to beautify and validate the entries made. The validation was further

managed at the server side using Java and SQL constraints defined. Sample code for the various

app files is in the appendix E.

The system is a browser based and as such, a user will need to have a browser installed on their

machine. Supported browsers include Firefox, Google Chrome, Chromium, Opera and any other

browsers that can support JavaScript. The user can then access the system web portal through the

URI relative to the application host machine. IF the instance is running on their machine,

72

http://localhost:8080/octopus can be used otherwise the Internet protocol or IP of the server hosting

the Tomcat instance on which Octopus is deployed has to be specified. Once one has loaded the

application URI, they will be presented with the screen as in the figure below.

Figure 5.5: Login screen.

 On successful login, depending on the user access role, they will then be presented with the screen

below.

Figure 5.6: Home Screen.

http://localhost:8080/octopus

73

A user is then able to perform various functions as defined by their assigned role. For instance,

viewing project details, viewing or commenting on issues, reporting issues or changing status of

an issue logged. To create an issue one must have a project on which the issue will be tagged onto.

They can either create a project and then attach an issue to it or create an issue on a project they

have access to. This issue will be validated and cross checked to ensure it has not already been

created or similar issue created. Below is a sample screen showing how to create a project and

attach an issue to it respectively.

Figure 5.7: Project creation

Figure 5.8: Ticket creation

74

A report can be generated at specific points in the system depending on the user access rights

assigned. These reports can be in form of Text file, Excel or PDF as those are the supported formats

at the moment. The report display in tabular format also allows for sorting of data per column,

searching for specific entries or similar entries in the table. An example is a list of all open projects

visible to all users.

5.3.3 Script Description

The Octopus issue tracking system is developed following the object oriented principals and

methodologies. It contains 8 directories on the root each containing at least one sub directory and

scripts. These scripts support the various JavaScript and CSS functions used in the project. The

application logic is precompiled into Java byte code and stored in the WEB-INF directory not

accessible to users. Below is a description of the major scripts and directories. Please note that the

slash at the beginning of every path denotes the system root and that the application is packaged

as a single WAR file or Web Archive file which is unzipped, deployed and managed by Tomcat.

Name Type Path Description

CSS Directory /assets/css, /css These directories

contains cascading

style sheets. These are

files that create the

look and feel of the

interfaces.

 Directory /assets/js, /js These directories

contains the

JavaScript code to

enhance user

interface.

75

 Directory /assets/img, /img These directories

contain the images

used in the system

 Directory /WEB-INF/libs This directory is also

managed by tomcat

and contains all the

libraries used by the

application and

Tomcat.

 Directory /WEB-INF/classes Contains the

compiled byte code

for the Java Virtual

Machine to interpret.

 XML Config file /META-

INF/context.xml

This file defines the

database connection

type and properties.

It’s used by the

application to create a

connection pool

 Directory /wsdl This directory

contains the necessary

Webservices

definitions for

levering the third-

party Access APIs.

 Directory /fonts This directory

contains the custom

76

fonts used by the

application.

create_issue.jsp Java Server Page File create_issue.jsp Contains the display

for creating an issue

create_project.jsp Java Server Page File create_project.jsp Contains the display

for creating a project

dashboard.jsp Java Server Page File dashboard.jsp Contains the display

for project, issue

summary

footer.html Java Server Page File footer.html Contains the display

for footer

issue_detail.jsp Java Server Page File issue_detail.jsp Contains the display

for issue details

login.jsp Java Server Page File login.jsp Contains the display

for login access

project_detail.jsp Java Server Page File project_detail.jsp Contains the display

for project details

projects_list.jsp Java Server Page File projects_list.jsp Contains the display

for all projects.

projects.jsp Java Server Page File projects.jsp Contains the display

for all projects when

authenticated

register.jsp Java Server Page File register.jsp Contains the display

for registering a new

user

77

search_results.jsp Java Server Page File search_results.jsp Contains the display

for search results for

anything ranging

from project, user,

ticket to comment

search.jsp Java Server Page File search.jsp Contains the display

for searching for

anything ranging

from project, user,

ticket to comment

ticket_details.jsp Java Server Page File ticket_details.jsp Contains the display

for viewing ticket

details

tickets.jsp Java Server Page File tickets.jsp Contains the display

for all tickets on a

project

Table 5.1: Script Descriptions

5.4 Installation of the system

At the site, the system was deployed to the Tomcat Server using the Tomcat Manager App. Tomcat

Server was installed as a windows service and started, then accessed via browser using the link

http://192.168.2.203:8080 as Tomcat was configured to run on port 80 which is the default HTTP

port for internet traffic. The browser used was Opera and the following page was displayed on the

tomcat instance.

http://192.168.2.203:8080/

78

 Figure 5.9: tomcat installation page

5.5 System Testing

In order to test the functionality of the system, the prototype was installed on various Operating

systems running Java Version 1.7 and above to test system compatibility with the different

operating systems. This also helped eliminate major unforeseen bugs and errors and to ensure that

the system met all the specified user requirements. The tests carried out include;

5.5.1 Compatibility Testing

Compatibility testing was conducted on the prototype to evaluate the application’s compatibility

with various computing environments. The system is therefore able to operate on any platform

capable of running the Java Virtual machine 1.7 and above thanks to Java’s platform independence.

The browsers were also tested to see how compatible they can adapt to the Octopus user interface.

79

5.5.2 Performance Testing

Performance and speed of the application was also tested over a network and scalability also tested.

Tomcat has built in load balancers that were able to handle large simulated traffic from over 1000

requests in less than 10 seconds. The Octopus system handled the requests accordingly as

dispatched by the Tomcat load balancer.

5.5.3 System Functionality Tests

General Evaluation on System functionality

Access to Octopus (the software issue tracking application) was given to 10 users. 3 developers at

Neptune software company limited (system vendor) and 7 IT personnel at centenary bank. These

IT personnel included, the IT project Manager, the 6 other IT officers under the core banking

system support. They were asked to test and score the performance of the application against a list

of predefined attributes. The scale used is as below.

Poor=2 Fair=4 Neutral=6 Good 8 Excellent=10

Attribute Count of Testers Per Attribute Score

Attribute Poor Fair Neutral Good Excellent

1 Concurrent Application Access 0 0 0 0 10

2 Graphical User Interface

appearance

0 0 0 5 5

3 Application Usability 0 0 0 2 8

4 User Authorization &

Authentication

0 0 0 3 7

5 Automatic Issue Assignment 0 0 0 1 8

80

6 Duplicate bug filtering

Capability

0 0 0 2 8

7 Bug Prediction 0 2 3 1 4

8 Change control 0 1 3 3 3

Table 5.2: General Evaluation on System functionality

Summary Grading of Core Functionality

These were carried out, component by component basing on the four core functional requirements

and these included; Auto Issue assignment, Duplicate bug filtering, Bug Prediction, Change

control

Further, the four core functionalities were tested as a whole system and below is a matrix of marks

awarded by the tester. Each function was awarded marks basing on how well it addressed the

functional requirement as her been identified by the researcher.

Core Functional

Requirement

Auto Issue

assignment

Duplicate bug

filtering

Bug Prediction Change control

Percentage

Performance

Score

80%

85%

65%

75%

Table 5.3: Summary Grading of Core Functionality

Graphical user interface tests were carried out to ensure friendly navigation of the interface by the

user across the entire application interface.

81

CHAPTER SIX

SUMMARY, CONCLUSION AND RECOMMENDATIONS

6.0 Introduction

This chapter presents a conclusion to the system, summarizes achievements and difficulties

encountered during the research and recommendations on future work and what others could do

as far as this domain is concerned.

6.1 Summary

The core aim and significance of this research was to design and implement a fast, simple and

effective issue tracking system with intelligent features such as automated ticket assignment,

duplicate filtering, bug prediction and change control management, among others, hence

delivering a high performance, lightweight and flexible issue tracking system called Octopus. The

need for this arose when it was established and proved that existing issue tracking systems allow

reporting of duplicate issues, where a previously encountered and resolved issue could be reported

one or more times probably by different users without their knowledge. And that issue tracking

systems lacked adequate features to allow automated assignment of issues hence making the issue

assignment process manual and time consuming. These systems were also incapable of suggesting

possible solutions basing on already resolved bugs. Change control wasn’t enriched in these

existing issue tracking systems and hence the ability to maintain precise and updated system

documentation was insufficient. Furthermore, issue/ bug prediction basing on the recently resolved

issues has not been taken into consideration. The researcher then concluded that having the above

gaps addressed would significantly improve the timelines in which software issues are solved

efficiently and effectively.

6.2 Conclusion

Issue tracking is an important part of every software project and using issue tracking systems is

necessary, as it brings on board the following benefits:

a) Improvement in the turnaround time of software issues resolution.

82

b) Increased user satisfaction and customer appreciation in software issue support.

c) Allows for requests accountability.

d) Greatly improves communication within the team and also to the customers.

e) It also increases the productivity of the team and reduction of operating expenses in

software firms.

However, even the best issue tracking system does not help if it does not have a proper request

workflow and the responsible team does not learn to report requests correctly. Octopus aims to

address these flaws or issues in current issue tracking systems by adhering to the following four

basic rules:

1. Be specific. A detailed description should state what the awaited result is and what is

occurring instead – what one may consider to be a mistake.

2. Show as much as possible. If the program writes an error message, it must be copied into

the report. Adding screenshots to bug reports as much as possible is very important

3. Describe how to reproduce the problem. A programmer will need to reproduce the

problem on his or her own computer. After writing down how to do it, the user should go

through these instructions him or herself

4. Clearly differentiate between facts and assumptions. Sometimes the bug is hidden

elsewhere and with assumptions could lead the programmer to a false track. The focus

should be on the symptoms and diagnosis should be left to the experts.

Octopus issue tracking system is a young but great software with built in intelligent data processing

and manipulation algorithms forming the foundation for its data processing framework makes it a

good alternative for companies that need to keep it simple and clean.

6.3 Future Work

Looking back at the research study and the findings that were presented in this paper, we see a

study aiming at primarily preventing duplicate bug captures, providing quick fixes and automatic

ticket assignment. In future, there is need to have users have more control over the system and also

avail a mobile application for the Android, IPhone and Windows mobile platforms.

83

Only three primary roles of developers, quality assurance personnel, and project managers were

sampled for our study. One large area for potential future work then would be to broaden that

sampling to include some of the many other stakeholders identified as playing a pivotal role in the

development process. Such stakeholders could include customer service and support personnel,

customers of the systems being developed that are external to the company, higher-ups within the

management hierarchy, or even members of the banking operations staff within the organizations

studied.

84

REFERENCE LIST

ARANDA, J. AND VENOLIA, G. 2009. The secret life of bugs: Going past the errors and

omissions in software repositories. In Proceedings of the International Conference on Software

Engineering, pages 298–308.

BETTENBURG, R. PREMRAJ, R, ZIMMERMANN, T AND KIM, S,, 2008. Duplicate bug

reports considered harmful, In ICSM’08 Proceedings of the 24th IEEE International Conference

on Software Maintenance, pages 337–345, 2008

BEYER, H, AND HOLTZBLATT, K 1997. Contextual Design: Defining Customer-Centered

Systems (Interactive Technologies), Morgan Kaufmann, San Francisco.

BLACK, R 2002. Managing the Testing Process: Practical Tools and Techniques for Managing

Hardware and Software Testing, Wiley Publishing, New York

BUXTON, B. 2007. Sketching User Experiences: Getting the Design Right and the Right Design

(Interactive Technologies). San Francisco: Morgan Kaufmann.

CHURCHILL, E.F, TREVOR, J, BLY, S, NELSON, L AND CUBRANIC, D, 2000. Anchored

conversations, In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing

Systems, pages 454–461.

CORBIN, J AND STRAUSS, A 2008. Basics of qualitative research: Techniques and procedures

for developing grounded theory, Sage Publications, Los Angeles

DINGSOYR, T AND ROYRVIK, E, 2003. An empirical study of an informal knowledge

repository in a medium-sized software consulting company, In Proceedings of the International

Conference on Software Engineering, pages 84–92.

HEVNER, A.R., MARCH, S.T., PARK, J. & RAM, S., “Design Science in Information Systems

Research, MIS Quarterly, 28(1), 2004, pp. 75-105.

85

JAANTTI, M, SHRESTHA, A & CATER-STEEL, A 2012. Towards an improved it service desk

system and processes: a case study, International Journal on Advances in Systems and

Measurements, vol. 5, pp. 203-215.

LYU, M.R, 2011. Handbook of Software Reliability Engineering, McGraw Hill.

ROLAND, M., AND THORING, K 2011. Understanding artifact knowledge in design science:

Prototypes and products as knowledge repositories. Proceedings of the 17th Americas Conference

on Information Systems.

SALDARINI, R. 2010. Analysis and design of business information systems. Macmillan PC, New

York, 2010

TRAJKOV, M AND SMILJKOVIC, A. 2011. A Survey of Bug Tracking Tools: Presentation,

Analysis and Trends.

WEISS, C, PREMRAJ, R, & ZIMMERMANN, T 2008. What makes a good bug report? In

Proceedings of the ACM SIGSOFT International Symposium on the Foundations of Software

Engineering, pages 308–318.

ZATUL, AS, AND MUDIANA, M 2012, Change and Bug Tracking System, International Journal

of Computer Applications (0975 – 8887) Volume 10– No.3

86

APPENDIX 1

INTERVIEWER QUESTIONING GUIDE

The basic interview protocol was as follows, with additional questions inserted opportunistically

based on observations made and participant responses:

1. Can you please give me a tour of the issue tracking system you use?

2. What issue tracking system do you use? Have you always used this system in your current

position, or have you switched recently?

3. Can you please describe the primary purpose of issue tracking systems from your

perspective?

4. What are the different roles and responsibilities of the people working with the issue

tracking system in your department (including yourself)? Do certain people have different

levels of access to the issue tracking database than others? a.

a) Is there a QA process?

b) Do outside stakeholders (users) have the ability to enter bugs and/or feature

requests directly/indirectly into the issue tracking system?

c) Does management make use of any reports or metrics from the issue tracking

system?

5. What is your workflow for managing and resolving bugs/features? What are the steps in

the process? Who is/are responsible for each step?

6. What information is usually tracked with each issue?

7. Please walk me through the process of: (“Tell me about the last time you did X...”)

d) Adding a new feature or bug into the issue tracking system.

e) Starting to work on resolving a bug.

f) Starting to work on implementing a new feature

8. When working with bugs/features in the issue tracking system, what are the other software

tools you use most frequently? Why do you use these particular tools? a. Integration with

source code repositories, IDE, email?

9. When reporting an issue, how does the system handle duplicate reporting?

a) Does it automatically reject and propose existing fixes of similar issues.

87

b) Does it accept the issue and assign it to the resolver who later learns that it was

achieved?

c) Does it allow the issue to be reported and links it with existing similar issues?

10. What is involved in the process of assigning a bug to a user and what is taken into

consideration when choosing a resolver to handle the bug?

d) Experience on similar types of issues?

e) Amount of work they are currently handling?

f) Others please specify is available.

11. What types of information do you frequently require from others in order to complete your

day-to-day issue tracking and related software development tasks? How do you usually

obtain this information? How frequently do you find yourself looking for these kinds of

information?

12. What communication channels do you use to communicate with your colleagues and other

project stakeholders? How frequently do you use each communication channel?

a) Instant messaging such as Skype

b) Micro-blogging (such as twitter)

c) Chat (e.g., IRC, Skype)

d) Email

e) Wiki

f) Mailing lists/bulletin boards

g) Verbal conversation (face-to-face, phone/Skype)

h) Physical notebook

13. Do you have a preference as to which communication channel you use? If so, under what

conditions and why? a.

a) Try to discern motivation for use of one channel over another

b) Synchronous vs. asynchronous component

c) Normally archived vs. not normally archived (i.e., availability of communication

history to the rest of the team, management, etc.)

14. What shortcomings have you experienced with the tools you currently use from a

communication/collaboration perspective? What workarounds have you come up with?

Are there any shortcomings that stop you from completing your issue tracking or related

88

software development tasks? 14. Is there anything else you’d like to tell me about that I

haven’t asked you about?

89

 APPENDIX 2

Samples snippets of Code in line with the sample screen shots as displayed in chapter five of the

main body.

i. Sample Code for Login screen

ii. Sample code for Home Screen.

90

iii. Sample Code for Project creation

91

iv. Sample Code for Ticket creation

